Artigo Revisado por pares

Self-organizing neural projections

2006; Elsevier BV; Volume: 19; Issue: 6-7 Linguagem: Inglês

10.1016/j.neunet.2006.05.001

ISSN

1879-2782

Autores

Teuvo Kohonen,

Tópico(s)

Advanced Memory and Neural Computing

Resumo

The Self-Organizing Map (SOM) algorithm was developed for the creation of abstract-feature maps. It has been accepted widely as a data-mining tool, and the principle underlying it may also explain how the feature maps of the brain are formed. However, it is not correct to use this algorithm for a model of pointwise neural projections such as the somatotopic maps or the maps of the visual field, first of all, because the SOM does not transfer signal patterns: the winner-take-all function at its output only defines a singular response. Neither can the original SOM produce superimposed responses to superimposed stimulus patterns. This presentation introduces a new self-organizing system model related to the SOM that has a linear transfer function for patterns and combinations of patterns all the time. Starting from a randomly interconnected pair of neural layers, and using random mixtures of patterns for training, it creates a pointwise-ordered projection from the input layer to the output layer. If the input layer consists of feature detectors, the output layer forms a feature map of the inputs.

Referência(s)
Altmetric
PlumX