Role of Tl and T2 Cytokines in the Response to Mycobacterium tuberculosis
1996; Wiley; Volume: 795; Issue: 1 Linguagem: Inglês
10.1111/j.1749-6632.1996.tb52662.x
ISSN1749-6632
AutoresJoAnne L. Flynn, Barry R. Bloom,
Tópico(s)Immune Response and Inflammation
ResumoAnnals of the New York Academy of SciencesVolume 795, Issue 1 p. 137-146 Role of Tl and T2 Cytokines in the Response to Mycobacterium tuberculosis JOANNE L. FLYNN, Corresponding Author JOANNE L. FLYNN Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261Address for correspondence: Department of Molecular Genetics and Biochemistry, Biomedical Science Tower, Room E1240, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261. Telephone: (412) 648-9570; Fax: (412) 624-1401.Search for more papers by this authorBARRY R. BLOOM, BARRY R. BLOOM Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461Search for more papers by this author JOANNE L. FLYNN, Corresponding Author JOANNE L. FLYNN Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261Address for correspondence: Department of Molecular Genetics and Biochemistry, Biomedical Science Tower, Room E1240, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261. Telephone: (412) 648-9570; Fax: (412) 624-1401.Search for more papers by this authorBARRY R. BLOOM, BARRY R. BLOOM Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461Search for more papers by this author First published: October 1996 https://doi.org/10.1111/j.1749-6632.1996.tb52662.xCitations: 22AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Dolin, P. J., M. C. Raviglione & A. Kochi. 1994. Global tuberculosis incidence and mortality during 1990–2000. Bull. W.H.O. 72: 213–220. PubMedWeb of Science®Google Scholar 2 Flynn, J. L., M. M. Goldstein, K. J. Triebold, B. Koller & B. R. Bloom. 1992. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA 89: 12013–12017. 10.1073/pnas.89.24.12013 CASPubMedWeb of Science®Google Scholar 3 Kaufmann, S. H. E. & I. Flesch. 1986. Function and antigen recognition pattern of L3T4+ T cell clones from Mycobacterium tuberculosis-immune mice. Infect. Immun. 54: 291–296. 10.1128/IAI.54.2.291-296.1986 CASPubMedWeb of Science®Google Scholar 4 Leveton, C., S. Barnass, B. Champion, S. Lucas, B. De Souza, M. Nicol, D. Banerjee & G. Rook. 1989. T-cell mediated protection of mice against virulent Mycobacterium tuberculosis. Infect. Immun. 57.2: 390–395. Web of Science®Google Scholar 5 Orme, I. & F. Collins. 1984. Adoptive protection of the Mycobacteria tuberculosis-infected lung. Cell. Immun. 84: 113–120. 10.1016/0008-8749(84)90082-0 PubMedWeb of Science®Google Scholar 6 Orme, I. & F. Collins. 1983. Protection against Mycobacterium tuberculosis infection by adoptive immunotherapy. J. Exp. Med. 158: 74–83. 10.1084/jem.158.1.74 CASPubMedWeb of Science®Google Scholar 7 Flory, C., R. Hubbard & F. Collins 1992. Effects of in vivo T lymphocyte subset depletion on mycobacterial infections in mice. J. Leuk. Biol. 51: 225–229. 10.1002/jlb.51.3.225 CASPubMedWeb of Science®Google Scholar 8 Denis, M. 1991. Interferon-γ-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates. Cell. Immunol. 132: 150–157. 10.1016/0008-8749(91)90014-3 CASPubMedWeb of Science®Google Scholar 9 Chan, J., Y. Xing, R. Magliozzo & B. R. Bloom. 1992. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med. 175: 1111–1122. 10.1084/jem.175.4.1111 CASPubMedWeb of Science®Google Scholar 10 Flesch, I. & S. Kaufmann. 1991. Mechanisms involved in mycobacterial growth inhibition by gamma-interferon activated bone marrow macrophages: Role of reactive nitrogen intermediates. Infect. Immun. 59: 3213–3218. CASPubMedWeb of Science®Google Scholar 11 Chan, J., K. Tanaka, D. Carroll, J. L. Flynn & B. R. Bloom. 1995. Effect of nitric oxide synthas inhibitors on murine infection with Mycobacterium tuberculosis. Infect. Immun. 63: 736–740. CASPubMedWeb of Science®Google Scholar 12 Munoz-Fernandez, M. A., M. A. Fernandez & M. Fresno. 1992. Activation of human macrophages for the killing of intracellular Trypanosoma cruzi by TNF-α and IFN-γ through a nitric oxide-dependent mechanism. Immunol. Lett. 33: 35–40. 10.1016/0165-2478(92)90090-B PubMedWeb of Science®Google Scholar 13 Kobzik, L., D. S. Bredt, C J. Lowenstein, J. Drazen, B. Gaston, D. Sugarbaker & J. S. Stamler. 1993. Nitric oxide synthase in human and rat lung: Immunocytochemical and histochemical localization. Am. J. Respir. Cell. Mol. Biol. 9: 371–377. 10.1165/ajrcmb/9.4.371 CASPubMedWeb of Science®Google Scholar 14 Denis, M. 1994. Human monocytes/macrophages: NO or no NO? J. Leuk. Biol. 55: 682–684. 10.1002/jlb.55.5.682 CASPubMedWeb of Science®Google Scholar 15 De Maria, R., M. G. Cifone, R. Trotta, M. R. Rippo, C. Festuccia, A. Santoni & R. Testi. 1994. Triggering of human monocyte activation through CD69, a member of the natural killer cell gene complex family of signal transducing receptors. J. Exp. Med. 180: 1999–2004. 10.1084/jem.180.5.1999 CASPubMedWeb of Science®Google Scholar 16 Bukrinsky, M. I., H. S. L. M. Nottet, H. Schmidtmayerova, L. Dubrovsky, C. R. Flanagan, M. E. Mullins, S. A. Lipton & H. E. Gendelman. 1995. Regulation of nitric oxide synthase activity in human immunodeficiency virus Type 1 (HIV-1) infected monocytes: Implications for HIV-associated neurological disease. J. Exp. Med. 181: 735–745. 10.1084/jem.181.2.735 CASPubMedWeb of Science®Google Scholar 17 Dalton, D. K., S. Pitts-Meek, S. Keshav, I. S. Figari, A. Bradley & T. A. Stewart. 1993. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259: 1739–1742. 10.1126/science.8456300 CASPubMedWeb of Science®Google Scholar 18 Flynn, J. L., J. Chan, K. J. Triebold, D. K. Dalton, T. A. Steward & B. R. Bloom. 1993. An essential role for interferon-γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178: 2249–2254. 10.1084/jem.178.6.2249 CASPubMedWeb of Science®Google Scholar 19 Cooper, A. M., D. K. Dalton, T. A. Stewart, J. P. Griffen, D. G. Russell & I. M. Orme. 1993. Disseminated tuberculosis in IFN-γ gene-disrupted mice. J. Exp. Med. 178: 2243–2248. 10.1084/jem.178.6.2243 CASPubMedWeb of Science®Google Scholar 20 Flynn, J. L., M. M. Goldstein, J. Chan, K. J. Triebold, K. Pfeffer, C. J. Lowenstein, R. Schreiber, T. W. Mak & B. R. Bloom. 1995. Tumor necrosis factor-α is required in the protective immune response against M. tuberculosis in mice. Immunity 2: 561–572. 10.1016/1074-7613(95)90001-2 CASPubMedWeb of Science®Google Scholar 21 Sheehan, K. C. F., N. H. Ruddle & R. D. Schreiber. 1989. Generation and characterization of hamster monoclonal antibodies that neutralize murine tumor necrosis factors. J. Immunol. 142: 3884–3893. CASPubMedWeb of Science®Google Scholar 22 Pfeffer, K., T. Matsuyama, T. M. Kundig, A. Wakeham, K. Kishihara, A. Ahahinian, K. Wiegmann, P. S. Ohashi, M. Kronke & T. W. Mak. 1993. Mice deficient for the 55-kDa tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73: 457–467. 10.1016/0092-8674(93)90134-C CASPubMedWeb of Science®Google Scholar 23 Sypek, J. P., C. L. Chung, S. E. H. Mayor, J. M. Subramanyam, S. J. Goldman, D. S. Sieburth, S. F. Wolf & R. G. Schaub. 1993. Resolution of cutaneous leishmaniasis: Interleukin 12 initiates a protective T helper Type 1 immune response. J. Exp. Med. 177: 1797–1802. 10.1084/jem.177.6.1797 CASPubMedWeb of Science®Google Scholar 24 Heinzel, F. P., D. S. Schoenhaut, R. M. Rerko, L. E. Rosser & M. K. Gately. 1993. Recombinant interleukin 12 cures mice infected with Leishmania major. J. Exp. Med. 177: 1505–1509. 10.1084/jem.177.5.1505 CASPubMedWeb of Science®Google Scholar 25 Hsieh, C-S., S. E. Macatonia, C. S. Tripp, S. F. Wolf, A. O'Garra & K. M. Murphy. 1993. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260: 547–549. 10.1126/science.8097338 CASPubMedWeb of Science®Google Scholar 26 Finkelman, F. D., K. B. Madden, A. W. Cheever, I. M. Katona, S. C. Morris, M. K. Gately, B. R. Hubbard, W. C. Gause J. F. Urban. 1994. Effects of interleukin 12 on immune responses and host protection in mice infected with intestinal nemotode parasites. J. Exp. Med. 179: 1563–1572. 10.1084/jem.179.5.1563 CASPubMedWeb of Science®Google Scholar 27 Wynn, T. A., I. Eltoum, I. P. Oswald, A. W. Cheever & A. Sher. 1994. Endogenous interleukin 12 regulates granulom formation induced by eggs of Schistosoma mansoni and exogenous IL-12 both inhibits and prophylatically immunizes against egg pathology. J. Exp. Med. 179: 1551–1561. 10.1084/jem.179.5.1551 CASPubMedWeb of Science®Google Scholar 28 Gazzinelli, R. T., S. Hieny, T. A. Wynn, S. Wolf & A. Sher. 1993. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon-γ by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc. Natl. Acad. Sci. USA 90: 6115–6119. 10.1073/pnas.90.13.6115 CASPubMedWeb of Science®Google Scholar 29 Tripp, C. S., M. K. Gately, J. Hakimi, P. Ling & E. R. Unanue. 1994. Neutralization of IL-12 decreases resistance to Listeria in SCID and C.B-17 mice-reversal by IFN-γamma. J. Immunol. 152: 1883–1887. CASPubMedWeb of Science®Google Scholar 30 Chomczynski, P. & N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159. 10.1016/0003-2697(87)90021-2 CASPubMedWeb of Science®Google Scholar 31 Flynn, J. L., M. M. Goldstein, K. J. Triebold, J. Sypek, S. Wolf & B. R. Bloom. 1995. IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection. J. Immunol. 155: 2515–2524. CASPubMedWeb of Science®Google Scholar 32 Reiner, S. L., S. Zheng, D. B. Corry & R. M. Locksley. 1993. Constructing polycompetitor cDNAs for quantitative PCR. J. Immunol. Methods 165: 37–46. 10.1016/0022-1759(93)90104-F CASPubMedWeb of Science®Google Scholar 33 AFONSO, L. C. C., T. Scharton, L. Q. Vieira, M. Wysocka, G. Trinchieri & P. Scott. 1994. The adjuvant effect of IL-12 in a vaccine against Leishmania major. Science 263: 235–237. 10.1126/science.7904381 CASPubMedWeb of Science®Google Scholar 34 Cooper, A. M., A. D. Roberts, E. R. Rhoades, J. E. Callahan, D. M. Getzy & I. M. Orme. 1995. The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 84: 423–432. CASPubMedWeb of Science®Google Scholar 35 Locksley, R. M. 1993. Interleukin-12 in host defense against microbial pathogens. Proc. Natl. Acad. Sci. USA 90: 5879–5880. 10.1073/pnas.90.13.5879 CASPubMedWeb of Science®Google Scholar 36 Hsieh, C-S., S. E. Macatonia, A. O'Garra & K. M. Murphy. 1993. Pathogen induced Thl phenotype development in CD4+αβ-TCR transgenic T cells is macrophage dependent. Int. Immunol. 5: 371–382. 10.1093/intimm/5.4.371 CASPubMedWeb of Science®Google Scholar Citing Literature Volume795, Issue1Interleukin 12: Cellular and Molecular Immunology of an Important Regulatory CytokineOctober 1996Pages 137-146 ReferencesRelatedInformation
Referência(s)