Artigo Acesso aberto Revisado por pares

Physical and Functional Interactions between Zic and Gli Proteins

2001; Elsevier BV; Volume: 276; Issue: 10 Linguagem: Inglês

10.1074/jbc.c000773200

ISSN

1083-351X

Autores

Yoshio Koyabu, Katsunori Nakata, Kiyomi Mizugishi, Jun Aruga, Katsuhiko Mikoshiba,

Tópico(s)

Epigenetics and DNA Methylation

Resumo

Zic and Gli family proteins are transcription factors that share similar zinc finger domains. Recent studies indicate that Zic and Gli collaborate in neural and skeletal development. We provide evidence that the Zic and Gli proteins physically and functionally interact through their zinc finger domains. Moreover, Gli proteins were translocated to cell nuclei by coexpressed Zic proteins, and both proteins regulated each other's transcriptional activity. Our result suggests that the physical interaction between Zic and Gli is the molecular basis of their antagonistic or synergistic features in developmental contexts and that Zic proteins are potential modulators of the hedgehog-mediated signaling pathway. Zic and Gli family proteins are transcription factors that share similar zinc finger domains. Recent studies indicate that Zic and Gli collaborate in neural and skeletal development. We provide evidence that the Zic and Gli proteins physically and functionally interact through their zinc finger domains. Moreover, Gli proteins were translocated to cell nuclei by coexpressed Zic proteins, and both proteins regulated each other's transcriptional activity. Our result suggests that the physical interaction between Zic and Gli is the molecular basis of their antagonistic or synergistic features in developmental contexts and that Zic proteins are potential modulators of the hedgehog-mediated signaling pathway. hemagglutinin polymerase chain reaction Sonic hedgehog glutathioneS-transferase thymidine kinase luciferase CREB (cAMP-response element-binding protein)-binding protein Zic and Gli transcription factors share a highly conserved zinc finger domain and have critical roles in multiple developmental processes. In human, mutations in ZIC2, ZIC3, andGLI3 genes result in various developmental abnormalities. ZIC2 results in malformation of the forebrain (holoprosencephaly), ZIC3 in a disturbance of the left to right body axis (heterotaxy), and GLI3 in complex anomalies of the brain and digits (cephalopolysyndactyly syndrome) (1Brown S.A. Warburton D. Brown L.Y., Yu, C.Y. Roeder E.R. Stengel R.S. Hennekam R.C. Muenke M. Nat. Genet. 1998; 20: 180-183Crossref PubMed Scopus (393) Google Scholar, 2Gebbia M. Ferrero G.B. Pilia G. Bassi M.T. Aylsworth A.S. Penman-Splitt M. Bird L.M. Bamforth J.S. Burn J. Schlessinger D. Nelson D.L. Cassey B. Nat. Genet. 1997; 17: 305-308Crossref PubMed Scopus (363) Google Scholar, 3Vortkamp A. Gessler M. Grzeschik K.H. Nature. 1991; 352: 539-540Crossref PubMed Scopus (474) Google Scholar). Studies in other vertebrates indicated that Zic1, Zic2, Zic3, Gli1, Gli2, and Gli3 are involved in multiple aspects of the neural and skeletal development (4Aruga J. Minowa O. Yaginuma H. Kuno J. Nagai T. Noda T. Mikoshiba K.,. J. Neurosci. 1998; 18: 284-293Crossref PubMed Google Scholar, 5Nagai T. Aruga J. Minowa O. Sugimoto T. Ohno Y. Noda T. Mikoshiba K. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 1618-1623Crossref PubMed Scopus (190) Google Scholar, 6Mo R. Freer A.M. Zinyk D.L. Crackower M.A. Michaud J. Heng H.H. Chik K.W. Shi X.M. Tsui L.C. Cheng S.H. Joyner A.L. Hui C.C. Development. 1997; 124: 113-123Crossref PubMed Google Scholar, 7Park H.L. Bai C. Platt K.A. Matise M.P. Beeghly A. Hui C.C. Nakashima M. Joyner A.L. Development. 2000; 127: 1593-1605Crossref PubMed Google Scholar, 8Ding Q. Fukami S-i. Meng X. Nishizaki Y. Zhang X. Sasaki H. Dlugosz A. Nakafuku M. Hui C.C. Curr. Biol. 1999; 9: 1119-1122Abstract Full Text Full Text PDF PubMed Scopus (168) Google Scholar, 9Matise M.P. Epstein D.J. Park H.L. Platt K.A. Joyner A.L. Development. 1998; 125: 2759-2770Crossref PubMed Google Scholar, 10Hui C.C. Joyner A.L. Nat. Genet. 1993; 3: 241-246Crossref PubMed Scopus (605) Google Scholar, 11Nakata K. Nagai T. Aruga J. Mikoshiba K. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 11980-11985Crossref PubMed Scopus (212) Google Scholar, 12Nakata K. Nagai T. Aruga J. Mikoshiba K. Mech. Dev. 1998; 75: 43-51Crossref PubMed Scopus (139) Google Scholar, 13Brewster R. Lee J. Ruiz i Altaba A. Nature. 1998; 393: 579-583Crossref PubMed Scopus (197) Google Scholar, 14Ruiz i Altaba A. Trends Genet. 1999; 15: 418-425Abstract Full Text Full Text PDF PubMed Scopus (206) Google Scholar). Zic and Gli families are also critical in invertebrate development as shown by the studies on their Drosophila homologues, Odd-paired (15Benedyk M.J. Mullen J.R. DiNardo S. Genes Dev. 1994; 8: 105-117Crossref PubMed Scopus (151) Google Scholar) and Cubitus interruptus (Ci) (16Orenic T.V. Slusarski D.C. Kroll K.L. Holmgren R.A. Genes Dev. 1990; 4: 1053-1067Crossref PubMed Scopus (222) Google Scholar).Although a number of studies suggest the importance of the two zinc finger protein families, the relationship between them has not been fully understood. However, recent studies have shown significant Zic-Gli genetic interaction in neural and skeletal patterning.Xenopus Zic2 and Gli2 are counter-active in the patterning of neural tube along the dorsoventral axis (13Brewster R. Lee J. Ruiz i Altaba A. Nature. 1998; 393: 579-583Crossref PubMed Scopus (197) Google Scholar). On the other hand, the double mutation of Zic1 and Gli3 showed a synergistic disturbance in the segmentation of the vertebral lamina (17Aruga J. Mizugishi K. Koseki H. Imai K. Balling R. Noda T. Mikoshiba K. Mech. Dev. 1999; 89: 141-150Crossref PubMed Scopus (68) Google Scholar).Gli proteins bind a consensus nonamer target DNA sequence (GLI-BS) (18Kinzler K.W. Vogelstein B. Mol. Cell. Biol. 1990; 10: 634-642Crossref PubMed Scopus (412) Google Scholar) to which Zic proteins can also bind (19Aruga J. Yokota N. Hashimoto M. Furuichi T. Fukuda M. Mikoshiba K.,. J. Neurochem. 1994; 63: 1880-1890Crossref PubMed Scopus (208) Google Scholar). However, we recently found that the DNA-binding affinity of the Zic proteins was lower than that of Gli (20Mizugishi K. Aruga J. Nakata K. Mikoshiba K. J. Biol. Chem. 2001; 276: 2180-2188Abstract Full Text Full Text PDF PubMed Scopus (152) Google Scholar) and that Zic proteins significantly enhance gene expression but less efficiently in the absence of GLI-BS. When Zic and Gli are expressed together in cultured cells, they synergistically enhance, or mutually suppress, GLI-BS-mediated transcription depending on the cell type (20Mizugishi K. Aruga J. Nakata K. Mikoshiba K. J. Biol. Chem. 2001; 276: 2180-2188Abstract Full Text Full Text PDF PubMed Scopus (152) Google Scholar). Here we show that Zic and Gli proteins physically interact through their zinc finger domains and regulate each other's subcellular localization and transcriptional activity. Zic and Gli transcription factors share a highly conserved zinc finger domain and have critical roles in multiple developmental processes. In human, mutations in ZIC2, ZIC3, andGLI3 genes result in various developmental abnormalities. ZIC2 results in malformation of the forebrain (holoprosencephaly), ZIC3 in a disturbance of the left to right body axis (heterotaxy), and GLI3 in complex anomalies of the brain and digits (cephalopolysyndactyly syndrome) (1Brown S.A. Warburton D. Brown L.Y., Yu, C.Y. Roeder E.R. Stengel R.S. Hennekam R.C. Muenke M. Nat. Genet. 1998; 20: 180-183Crossref PubMed Scopus (393) Google Scholar, 2Gebbia M. Ferrero G.B. Pilia G. Bassi M.T. Aylsworth A.S. Penman-Splitt M. Bird L.M. Bamforth J.S. Burn J. Schlessinger D. Nelson D.L. Cassey B. Nat. Genet. 1997; 17: 305-308Crossref PubMed Scopus (363) Google Scholar, 3Vortkamp A. Gessler M. Grzeschik K.H. Nature. 1991; 352: 539-540Crossref PubMed Scopus (474) Google Scholar). Studies in other vertebrates indicated that Zic1, Zic2, Zic3, Gli1, Gli2, and Gli3 are involved in multiple aspects of the neural and skeletal development (4Aruga J. Minowa O. Yaginuma H. Kuno J. Nagai T. Noda T. Mikoshiba K.,. J. Neurosci. 1998; 18: 284-293Crossref PubMed Google Scholar, 5Nagai T. Aruga J. Minowa O. Sugimoto T. Ohno Y. Noda T. Mikoshiba K. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 1618-1623Crossref PubMed Scopus (190) Google Scholar, 6Mo R. Freer A.M. Zinyk D.L. Crackower M.A. Michaud J. Heng H.H. Chik K.W. Shi X.M. Tsui L.C. Cheng S.H. Joyner A.L. Hui C.C. Development. 1997; 124: 113-123Crossref PubMed Google Scholar, 7Park H.L. Bai C. Platt K.A. Matise M.P. Beeghly A. Hui C.C. Nakashima M. Joyner A.L. Development. 2000; 127: 1593-1605Crossref PubMed Google Scholar, 8Ding Q. Fukami S-i. Meng X. Nishizaki Y. Zhang X. Sasaki H. Dlugosz A. Nakafuku M. Hui C.C. Curr. Biol. 1999; 9: 1119-1122Abstract Full Text Full Text PDF PubMed Scopus (168) Google Scholar, 9Matise M.P. Epstein D.J. Park H.L. Platt K.A. Joyner A.L. Development. 1998; 125: 2759-2770Crossref PubMed Google Scholar, 10Hui C.C. Joyner A.L. Nat. Genet. 1993; 3: 241-246Crossref PubMed Scopus (605) Google Scholar, 11Nakata K. Nagai T. Aruga J. Mikoshiba K. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 11980-11985Crossref PubMed Scopus (212) Google Scholar, 12Nakata K. Nagai T. Aruga J. Mikoshiba K. Mech. Dev. 1998; 75: 43-51Crossref PubMed Scopus (139) Google Scholar, 13Brewster R. Lee J. Ruiz i Altaba A. Nature. 1998; 393: 579-583Crossref PubMed Scopus (197) Google Scholar, 14Ruiz i Altaba A. Trends Genet. 1999; 15: 418-425Abstract Full Text Full Text PDF PubMed Scopus (206) Google Scholar). Zic and Gli families are also critical in invertebrate development as shown by the studies on their Drosophila homologues, Odd-paired (15Benedyk M.J. Mullen J.R. DiNardo S. Genes Dev. 1994; 8: 105-117Crossref PubMed Scopus (151) Google Scholar) and Cubitus interruptus (Ci) (16Orenic T.V. Slusarski D.C. Kroll K.L. Holmgren R.A. Genes Dev. 1990; 4: 1053-1067Crossref PubMed Scopus (222) Google Scholar). Although a number of studies suggest the importance of the two zinc finger protein families, the relationship between them has not been fully understood. However, recent studies have shown significant Zic-Gli genetic interaction in neural and skeletal patterning.Xenopus Zic2 and Gli2 are counter-active in the patterning of neural tube along the dorsoventral axis (13Brewster R. Lee J. Ruiz i Altaba A. Nature. 1998; 393: 579-583Crossref PubMed Scopus (197) Google Scholar). On the other hand, the double mutation of Zic1 and Gli3 showed a synergistic disturbance in the segmentation of the vertebral lamina (17Aruga J. Mizugishi K. Koseki H. Imai K. Balling R. Noda T. Mikoshiba K. Mech. Dev. 1999; 89: 141-150Crossref PubMed Scopus (68) Google Scholar). Gli proteins bind a consensus nonamer target DNA sequence (GLI-BS) (18Kinzler K.W. Vogelstein B. Mol. Cell. Biol. 1990; 10: 634-642Crossref PubMed Scopus (412) Google Scholar) to which Zic proteins can also bind (19Aruga J. Yokota N. Hashimoto M. Furuichi T. Fukuda M. Mikoshiba K.,. J. Neurochem. 1994; 63: 1880-1890Crossref PubMed Scopus (208) Google Scholar). However, we recently found that the DNA-binding affinity of the Zic proteins was lower than that of Gli (20Mizugishi K. Aruga J. Nakata K. Mikoshiba K. J. Biol. Chem. 2001; 276: 2180-2188Abstract Full Text Full Text PDF PubMed Scopus (152) Google Scholar) and that Zic proteins significantly enhance gene expression but less efficiently in the absence of GLI-BS. When Zic and Gli are expressed together in cultured cells, they synergistically enhance, or mutually suppress, GLI-BS-mediated transcription depending on the cell type (20Mizugishi K. Aruga J. Nakata K. Mikoshiba K. J. Biol. Chem. 2001; 276: 2180-2188Abstract Full Text Full Text PDF PubMed Scopus (152) Google Scholar). Here we show that Zic and Gli proteins physically interact through their zinc finger domains and regulate each other's subcellular localization and transcriptional activity. We thank Drs. B. Vogelstein, H. Sasaki, S. Ishii, P. Dai, H. Akimaru, J. Miyazaki, and T. Nakajima for the plasmids, Dr. M. Nakafuku for MNS70 cells and for helpful advice, and Dr. T. Tamura for helpful advice.

Referência(s)