Artigo Revisado por pares

Bis(η-tert-butylcyclopentadienyl)hydridoniobium Ditelluride, a Convenient Reagent for the Synthesis of Polynuclear Metal Telluride Complexes

2002; Wiley; Volume: 2002; Issue: 6 Linguagem: Inglês

10.1002/1099-0682(200206)2002

ISSN

1099-0682

Autores

Henri Brunner, Hélène Cattey, David Evrard, Marek M. Kubicki, Yves Mugnier, E. Vigier, Joachim Wächter, R. Wanninger, Manfred Zabel,

Tópico(s)

Synthesis and characterization of novel inorganic/organometallic compounds

Resumo

European Journal of Inorganic ChemistryVolume 2002, Issue 6 p. 1315-1325 Full Paper Bis(η-tert-butylcyclopentadienyl)hydridoniobium Ditelluride, a Convenient Reagent for the Synthesis of Polynuclear Metal Telluride Complexes Henri Brunner, Henri Brunner Institut für Anorganische Chemie, Universität Regensburg, 93040 Regensburg, GermanySearch for more papers by this authorHelene Cattey, Helene Cattey Laboratoire de Synthèse et d’Electrosynthèse Organométalliques (UMR 5632), Université de Bourgogne, 21100 Dijon, FranceSearch for more papers by this authorDavid Evrard, David Evrard Laboratoire de Synthèse et d’Electrosynthèse Organométalliques (UMR 5632), Université de Bourgogne, 21100 Dijon, FranceSearch for more papers by this authorMarek M. Kubicki, Marek M. Kubicki Laboratoire de Synthèse et d’Electrosynthèse Organométalliques (UMR 5632), Université de Bourgogne, 21100 Dijon, FranceSearch for more papers by this authorYves Mugnier, Yves Mugnier Laboratoire de Synthèse et d’Electrosynthèse Organométalliques (UMR 5632), Université de Bourgogne, 21100 Dijon, FranceSearch for more papers by this authorEstelle Vigier, Estelle Vigier Laboratoire de Synthèse et d’Electrosynthèse Organométalliques (UMR 5632), Université de Bourgogne, 21100 Dijon, FranceSearch for more papers by this authorJoachim Wachter, Joachim Wachter Institut für Anorganische Chemie, Universität Regensburg, 93040 Regensburg, GermanySearch for more papers by this authorRobert Wanninger, Robert Wanninger Institut für Anorganische Chemie, Universität Regensburg, 93040 Regensburg, GermanySearch for more papers by this authorManfred Zabel, Manfred Zabel Institut für Anorganische Chemie, Universität Regensburg, 93040 Regensburg, GermanySearch for more papers by this author Henri Brunner, Henri Brunner Institut für Anorganische Chemie, Universität Regensburg, 93040 Regensburg, GermanySearch for more papers by this authorHelene Cattey, Helene Cattey Laboratoire de Synthèse et d’Electrosynthèse Organométalliques (UMR 5632), Université de Bourgogne, 21100 Dijon, FranceSearch for more papers by this authorDavid Evrard, David Evrard Laboratoire de Synthèse et d’Electrosynthèse Organométalliques (UMR 5632), Université de Bourgogne, 21100 Dijon, FranceSearch for more papers by this authorMarek M. Kubicki, Marek M. Kubicki Laboratoire de Synthèse et d’Electrosynthèse Organométalliques (UMR 5632), Université de Bourgogne, 21100 Dijon, FranceSearch for more papers by this authorYves Mugnier, Yves Mugnier Laboratoire de Synthèse et d’Electrosynthèse Organométalliques (UMR 5632), Université de Bourgogne, 21100 Dijon, FranceSearch for more papers by this authorEstelle Vigier, Estelle Vigier Laboratoire de Synthèse et d’Electrosynthèse Organométalliques (UMR 5632), Université de Bourgogne, 21100 Dijon, FranceSearch for more papers by this authorJoachim Wachter, Joachim Wachter Institut für Anorganische Chemie, Universität Regensburg, 93040 Regensburg, GermanySearch for more papers by this authorRobert Wanninger, Robert Wanninger Institut für Anorganische Chemie, Universität Regensburg, 93040 Regensburg, GermanySearch for more papers by this authorManfred Zabel, Manfred Zabel Institut für Anorganische Chemie, Universität Regensburg, 93040 Regensburg, GermanySearch for more papers by this author First published: 24 April 2002 https://doi.org/10.1002/1099-0682(200206)2002:6 3.0.CO;2-0Citations: 13Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Reaction of [Cp′2NbH3] (Cp′ = tBuC5H4) with Te powder in THF gives [Cp′2Nb(Te2)H] (1) and [Cp′6Nb4Te4O] (2). The yield of 1 varies between 10 and 81% depending on the degree of oxygen contamination of the reagents. Complexes 1 and 2 react with [Cr(CO)5THF] to give [Cp′2Nb(Te2)H·Cr(CO)5] (3) and [Cp′6Nb4Te4O·2Cr(CO)5] (4), respectively. The crystal structures of 2−4 have been determined. In 3 a Te2 unit and an H ligand are coordinated to a bent niobocene moiety; the Cr(CO)5 group is attached to the lateral Te atom. The molecular cores of 2 and 4 are practically identical in that they contain two planar Nb2Te2 rings connected by a nearly linear oxygen bridge. Each of the “outer” Nb atoms bears two Cp′ ligands, whereas the “inner” Nb atom only has one such ligand. An additional structural feature in 4 is two Cr(CO)5 groups, attached to one Te bridge of each Nb2Te2 ring. Thermolysis of 3 leads to the formation of diamagnetic [Cp′4Nb2Te2] (5), which also contains a planar Nb2Te2 core. The relatively long transannular Nb−Nb distance (3.647 Å) is consistent, according to DFT calculations, with a through-space Nb−Nb coupling. Complex 5 reacts with CH3I with successive methylation of both Te bridges to give [Cp′4Nb2Te(CH3Te)]I ([6]I) and [Cp′4Nb2(CH3Te)2]I2 ([7]I2). The crystal structure of [7]I2 may be derived from that of 5, the incoming CH3 groups being fixed at the Te bridges in a trans position. 1H NMR spectroscopic investigations reveal a restricted rotation around the Cp′−Nb bonds in 2 and 5 at −90 °C and in 4 and [7]I2 at ambient temperature. Electrochemical studies have been carried out on 5, [6]I, and [7]I2, showing that all compounds undergo two reversible one-electron reduction steps. The reduction potential decreases by ca. 1.6 V when going from 5 to [7]I2. There is also a clear linear correlation between the reduction potentials measured for 5 to [7]I2 and the energies of the corresponding LUMO’s calculated at the DFT/B3LYP level. These LUMO’s bear some 70% contribution from both Nb atoms and, consequently, the reduction processes mainly operate at both metallic centers. (© Wiley-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002) References 1 J. M. Fischer , W. E. Piers , L. R. MacGillivray , M. J. Zaworotko , Inorg. Chem. 1994 , 34 , 2499 −2500 . 10.1021/ic00114a005 Web of Science®Google Scholar 2a G. Tainturier , M. Fahim , B. Gautheron , J. Organomet. Chem. 1989 , 373 , 193 −202 . 10.1016/0022-328X(89)85045-4 CASWeb of Science®Google Scholar 2b G. Tainturier , M. Fahim , G. Trouvé-Bellan , B. Gautheron , J. Organomet. Chem. 1989 , 376 , 321 −332 . 10.1016/0022-328X(89)85142-3 CASWeb of Science®Google Scholar 3 3a W. A. Howard , G. Parkin , A. L. Rheingold , Polyhedron 1994 , 14 , 25 −44 . 10.1016/0277-5387(94)00320-E Web of Science®Google Scholar 3b J. H. Shin , T. Hascall , G. Parkin , Organometallics 1999 , 18 , 6 −9 . 10.1021/om9807396 CASWeb of Science®Google Scholar 4 J. H. Shin , G. Parkin , Organometallics 1995 , 13 , 2147 −2149 . 10.1021/om00018a004 Web of Science®Google Scholar 5 J. H. Shin , G. Parkin , Organometallics 1994 , 14 , 1104 −1106 . 10.1021/om00003a010 Web of Science®Google Scholar 6 H. Brunner , M. Kubicki , J.-C. Leblanc , W. Meier , C. Moise , A. Sadorge , B. Stubenhofer , J. Wachter , R. Wanninger , Eur. J. Inorg. Chem. 1999 , 843 −848 . 10.1002/(SICI)1099-0682(199905)1999:5 3.0.CO;2-Y CASWeb of Science®Google Scholar 7 O. Blacque , H. Brunner , M. M. Kubicki , B. Nuber , B. Stubenhofer , J. Wachter , B. Wrackmeyer , Angew. Chem. Int. Ed. Engl. 1997 , 36 , 352 −353 . 10.1002/anie.199703521 CASWeb of Science®Google Scholar 8 H. Brunner , G. Gehart , M. M. Kubicki , E. Lehrl , D. Lucas , W. Meier , Y. Mugnier , B. Nuber , B. Stubenhofer , J. Wachter , J. Organomet. Chem. 1996 , 510 , 291 −295 . 10.1016/0022-328X(95)05930-N CASWeb of Science®Google Scholar 9 O. Blacque , H. Brunner , M. M. Kubicki , D. Lucas , W. Meier , Y. Mugnier , B. Nuber , B. Stubenhofer , J. Wachter , J. Organomet. Chem. 1998 , 564 , 71 −79 . 10.1016/S0022-328X(98)00615-9 CASWeb of Science®Google Scholar 10 H. Brunner , D. Lucas , T. Monzon , Y. Mugnier , B. Nuber , B. Stubenhofer , A. C. Stückl , J. Wachter , R. Wanninger , M. Zabel , Chem. Eur. J. 2000 , 6 , 493 −503 . 10.1002/(SICI)1521-3765(20000204)6:3 3.0.CO;2-E CASPubMedWeb of Science®Google Scholar 11 H. Brunner , J. Wachter , R. Wanninger , M. Zabel , J. Organomet. Chem. 2000 , 603 , 135 −137 . 10.1016/S0022-328X(00)00066-8 CASWeb of Science®Google Scholar 12 12a H. Brunner , G. Gehart , W. Meier , B. Nuber , J. Wachter , J. Organomet. Chem. 1993 , 454 , 117 −122 . 10.1016/0022-328X(93)83232-K CASWeb of Science®Google Scholar 12b J.-C. Leblanc , C. Moise , F. Volpato , H. Brunner , G. Gehart , J. Wachter , B. Nuber , J. Organomet. Chem. 1995 , 485 , 237 −242 . 10.1016/0022-328X(94)05016-5 CASWeb of Science®Google Scholar 13 H.-J. Bach , H. Brunner , J. Wachter , M. M. Kubicki , J.-C. Leblanc , C. Moise , F. Volpato , B. Nuber , M. L. Ziegler , Organometallics 1992 , 11 , 1403 −1407 . 10.1021/om00039a055 CASWeb of Science®Google Scholar 14 An analysis of the linear M−O−M bridging moiety is given in: J. W. Faller , Y. Ma , J. Organomet. Chem. 1988 , 340 , 59 −69 . 10.1016/0022-328X(88)80554-0 CASWeb of Science®Google Scholar 15 H. Brunner , J.-C. Leblanc , D. Lucas , W. Meier , C. Moise , Y. Mugnier , B. Nuber , S. Rigny , A. Sadorge , J. Wachter , J. Organomet. Chem. 1998 , 566 , 203 −210 . 10.1016/S0022-328X(98)00746-3 CASWeb of Science®Google Scholar 16 16a W. Tremel , J. Chem. Soc., Chem. Commun. 1992 , 126 −128 . 10.1039/c39920000126 CASWeb of Science®Google Scholar 16b H. Kleinke , W. Tremel , Chem. Commun. 1999 , 1175 −1176 . 10.1039/a901822k CASWeb of Science®Google Scholar 17 O. M. Kekia , A. L. Rheingold , J. Organomet. Chem. 1997 , 545 , 277 −280 . 10.1016/S0022-328X(97)00353-7 Web of Science®Google Scholar 18 J. Emsley, The Elements, Clarendon Press, Oxford 1989, 186. Google Scholar 19 Yu. V. Skripkin , I. L. Eremenko , A. A. Pasynskii , Yu. T. Struchkov , V. E. Shklover , J. Organomet. Chem. 1985 , 267 , 285 −292 . 10.1016/0022-328X(84)80200-4 Web of Science®Google Scholar 20 L. G. Guggenberger , Inorg. Chem. 1973 , 12 , 294 −301 . 10.1021/ic50120a010 CASWeb of Science®Google Scholar 21 G. Erker , R. Nolte , G. Tainturier , A. Rheingold , Organometallics 1989 , 8 , 454 −460 . 10.1021/om00104a028 CASWeb of Science®Google Scholar 22 Te−Te bonds in other monomeric η2-Te2 complexes: Google Scholar 22a [Cp*2Ti(Te2)] [2.703(2) Å].[1] Google Scholar 22b [Cp*2Zr(Te2)CO] [2.688(1) Å].[3] Google Scholar 22c [W(PMe3)(CNtBu)4(Te2)] [2.680(2) Å]: D. Rabinovich , G. Parkin , J. Am. Chem. Soc. 1993 , 115 , 9822 −9823 . 10.1021/ja00074a068 CASWeb of Science®Google Scholar 22d [triphosNi(Te2)] [2.668(1) Å]: M. Di Vaira , M. Peruzzini , P. Stoppioni , Angew. Chem. Int. Ed. Engl. 1987 , 26 , 916 −918 . 10.1002/anie.198709161 Web of Science®Google Scholar 23 23a W. A. Flomer , S. C. O′ Neal , J. W. Kolis , D. Jeter , A. W. Cordes , Inorg. Chem. 1988 , 27 , 969 −971 . 10.1021/ic00279a003 CASWeb of Science®Google Scholar 23b L. C. Roof , W. T. Pennington , J. W. Kolis , Inorg. Chem. 1992 , 31 , 2056 −2064 . 10.1021/ic00037a015 CASWeb of Science®Google Scholar 23c S. Stauf , C. Reisner , W. Tremel , Chem. Commun. 1996 , 1749 −1750 . 10.1039/CC9960001749 CASWeb of Science®Google Scholar 24 H. Brunner , G. Gehart , J.-C. Leblanc , C. Moise , B. Nuber , B. Stubenhofer , F. Volpato , J. Wachter , J. Organomet. Chem. 1996 , 517 , 47 −51 . 10.1016/0022-328X(95)06001-D CASWeb of Science®Google Scholar 25 H. Brunner , J. Wachter , R. Wanninger , M. Zabel , Eur. J. Inorg. Chem. 2001 , 1151 −1154 . 10.1002/1099-0682(200105)2001:5 3.0.CO;2-# CASWeb of Science®Google Scholar 26 H. Sitzmann , D. Saurenz , G. Wolmershäuser , A. Klein , R. Boese , Organometallics 2001 , 20 , 700 −705 . 10.1021/om000346i CASWeb of Science®Google Scholar 27 27a M. M. Rohmer , M. Bénard , Organometallics 1991 , 10 , 157 −163 . 10.1021/om00047a043 CASWeb of Science®Google Scholar 27b R. L. DeKock , M. A. Peterson , L. E. L. Reynolds , L.-H. Chen , E. J. Baerends , P. Vernooijs , Organometallics 1993 , 12 , 2794 −2805 . 10.1021/om00031a055 CASWeb of Science®Google Scholar 28 W. A. Herrmann , J. Rohrmann , C. Hecht , J. Organomet. Chem. 1985 , 290 , 53 −61 . 10.1016/0022-328X(85)80148-0 CASWeb of Science®Google Scholar 29 R. Wanninger, PhD thesis, Universität Regensburg 2000. Google Scholar 30 E. Samuel , D. Guery , J. Vedel , J. Organomet. Chem. 1984 , 263 , C43 . 10.1016/0022-328X(84)85044-5 CASWeb of Science®Google Scholar 31 R. W. Murray, C. N. Reitley, Electroanalytical principles, Interscience, New-York, 1963. Google Scholar 32 R. S. Nicholson , Anal. Chem. 1965 , 35 , 1351 . 10.1021/ac60230a016 Web of Science®Google Scholar 33 Calculated parameters are given in the order 5, [6]+, [7]2+: d(Nb−Nb): 3.7817, 3.6625, 3.6863 Å; d(Te−Te): 4.228, 4.377, 4.493 Å; d(Nb−Te): 2.834, 2.823(Te) and 2.884(TeMe), 2.890 Å. Google Scholar 34 M. Brandl, H. Brunner, J. Wachter, M. Zabel, Organometallics, accepted. Google Scholar 35 H. Brunner , A. C. Stückl , J. Wachter , R. Wanninger , M. Zabel , Angew. Chem. Int. Ed. 2001 , 40 , 2463 −2465 . 10.1002/1521-3773(20010702)40:13 3.0.CO;2-8 CASPubMedWeb of Science®Google Scholar 36 J. A. Labinger , Adv. Chem. Ser. 1978 , 167 , 149 . 10.1021/ba-1978-0167.ch011 CASGoogle Scholar 37 M. J. Frisch, G. W. Trucs, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratman, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. T. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, GAUSSIAN98 (Rev. A.6), Gaussian, Inc., Pittsburgh PA, 1998. Google Scholar 38 R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, UK, 1989. Google Scholar 39 A. D. Becke , J. Chem. Phys. 1993 , 98 , 5648 . 10.1063/1.464913 CASWeb of Science®Google Scholar 40 T. H. Dunning, Jr., P. J. Hay, in Modern Theoretical Chemistry (Ed.: H. F. Schaefer, III), Plenum Press, New York, 1976, p. 1; P. J. Hay , W. R. Wadt , J. Chem. Phys. 1985 , 82 , 270 ; P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 284; P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299. 10.1063/1.448799 CASWeb of Science®Google Scholar 41 P. v. d. Sluis , A. L. Spek , Acta Crystallogr., Sect. A 1990 , 46 , 194 . 10.1107/S0108767389011189 Web of Science®Google Scholar Citing Literature Volume2002, Issue6June 2002Pages 1315-1325 ReferencesRelatedInformation

Referência(s)