Artigo Revisado por pares

An X-ray absorption spectroscopy study of the structure and transformation of amorphous calcium carbonate from plant cystoliths

1993; Royal Society; Volume: 252; Issue: 1333 Linguagem: Inglês

10.1098/rspb.1993.0048

ISSN

1471-2954

Autores

Marina G. Taylor, K. Simkiss, G. N. Greaves, Megumi Okazaki, Stephen Mann,

Tópico(s)

Plant Water Relations and Carbon Dynamics

Resumo

Restricted accessMoreSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmail Cite this article Taylor Marina G. , Simkiss K. , Greaves G. N. , Okazaki M. and Mann Stephen 1993An X-ray absorption spectroscopy study of the structure and transformation of amorphous calcium carbonate from plant cystolithsProc. R. Soc. Lond. B.25275–80http://doi.org/10.1098/rspb.1993.0048SectionRestricted accessArticleAn X-ray absorption spectroscopy study of the structure and transformation of amorphous calcium carbonate from plant cystoliths Marina G. Taylor Google Scholar Find this author on PubMed Search for more papers by this author , K. Simkiss Google Scholar Find this author on PubMed Search for more papers by this author , G. N. Greaves Google Scholar Find this author on PubMed Search for more papers by this author , M. Okazaki Google Scholar Find this author on PubMed Search for more papers by this author and Stephen Mann Google Scholar Find this author on PubMed Search for more papers by this author Marina G. Taylor Google Scholar Find this author on PubMed , K. Simkiss Google Scholar Find this author on PubMed , G. N. Greaves Google Scholar Find this author on PubMed , M. Okazaki Google Scholar Find this author on PubMed and Stephen Mann Google Scholar Find this author on PubMed Published:22 April 1993https://doi.org/10.1098/rspb.1993.0048AbstractCystoliths are intracellular calcified bodies which are found in great numbers in the leaves of many higher plants such as Ficus retusa. The mineral part of these deposits is amorphous calcium carbonate, which transforms to calcite only when moistened. We have followed this transformation by using X-ray spectroscopy by measuring the local atomic structure around the calcium of the isolated dry cystoliths and after moistening them with water. The production and maintenance of the amorphous phase is clearly under biological control. The cystoliths may act as a pH-stat which neutralizes hydroxide ions. Potentially cytotoxic cations also accumulate in the cystoliths. Rapid precipitation of calcium carbonate into the organic matrix could favour the amorphous phase, which may be maintained by low concentrations of magnesium and phosphate, which are inhibitors of the nucleation of crystalline phases.FootnotesThis text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR. Previous Article VIEW FULL TEXT DOWNLOAD PDF FiguresRelatedReferencesDetailsCited by Sivaguru M, Saw J, Wilson E, Lieske J, Krambeck A, Williams J, Romero M, Fouke K, Curtis M, Kear-Scott J, Chia N and Fouke B (2021) Human kidney stones: a natural record of universal biomineralization, Nature Reviews Urology, 10.1038/s41585-021-00469-x, 18:7, (404-432), Online publication date: 1-Jul-2021. Jin X, Park M, Shin S, Jo Y, Kim M, Kim H, Kang Y and Hwang S (2020) Synergistic Control of Structural Disorder and Surface Bonding Nature to Optimize the Functionality of Manganese Oxide as an Electrocatalyst and a Cathode for Li–O 2 Batteries , Small, 10.1002/smll.201903265, 16:12, (1903265), Online publication date: 1-Mar-2020. Andriopoulou N and Christidis G (2020) Multi-analytical characterisation of wheat biominerals: impact of methods of extraction on the mineralogy and chemistry of phytoliths, Archaeological and Anthropological Sciences, 10.1007/s12520-020-01091-5, 12:8, Online publication date: 1-Aug-2020. Chaka A (2019) Quantifying the Impact of Magnesium on the Stability and Water Binding Energy of Hydrated Calcium Carbonates by Ab Initio Thermodynamics , The Journal of Physical Chemistry A, 10.1021/acs.jpca.9b00180, 123:13, (2908-2923), Online publication date: 4-Apr-2019. Sibony-Nevo O, Pinkas I, Farstey V, Baron H, Addadi L and Weiner S (2019) The Pteropod Creseis acicula Forms Its Shell through a Disordered Nascent Aragonite Phase , Crystal Growth & Design, 10.1021/acs.cgd.8b01400, 19:5, (2564-2573), Online publication date: 1-May-2019. Evans D, Webb P, Penkman K, Kröger R and Allison N (2019) The Characteristics and Biological Relevance of Inorganic Amorphous Calcium Carbonate (ACC) Precipitated from Seawater, Crystal Growth & Design, 10.1021/acs.cgd.9b00003, 19:8, (4300-4313), Online publication date: 7-Aug-2019. Jensen A, Imberti S, Parker S, Schneck E, Politi Y, Fratzl P, Bertinetti L and Habraken W (2018) Hydrogen Bonding in Amorphous Calcium Carbonate and Molecular Reorientation Induced by Dehydration, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.7b10459, 122:6, (3591-3598), Online publication date: 15-Feb-2018. Chaka A (2018) Ab Initio Thermodynamics of Hydrated Calcium Carbonates and Calcium Analogues of Magnesium Carbonates: Implications for Carbonate Crystallization Pathways, ACS Earth and Space Chemistry, 10.1021/acsearthspacechem.7b00101, 2:3, (210-224), Online publication date: 15-Mar-2018. Conde Silva J and Milestone N (2018) Cement/rock interaction in geothermal wells. The effect of silica addition to the cement and the impact of CO 2 enriched brine, Geothermics, 10.1016/j.geothermics.2018.01.004, 73, (16-31), Online publication date: 1-May-2018. Saharay M and Kirkpatrick R (2017) Water dynamics in hydrated amorphous materials: a molecular dynamics study of the effects of dehydration in amorphous calcium carbonate, Physical Chemistry Chemical Physics, 10.1039/C7CP04683A, 19:43, (29594-29600) Katsikini M (2016) Detailed spectroscopic study of the role of Br and Sr in coloured parts of the Callinectes sapidus crab claw, Journal of Structural Biology, 10.1016/j.jsb.2016.05.006, 195:1, (1-10), Online publication date: 1-Jul-2016. Sun S, Chevrier D, Zhang P, Gebauer D and Cölfen H (2016) Ausgeprägte Nahordnung in kleinen amorphen Calciumcarbonat-Clustern (<2 nm), Angewandte Chemie, 10.1002/ange.201604179, 128:40, (12393-12397), Online publication date: 26-Sep-2016. Sun S, Chevrier D, Zhang P, Gebauer D and Cölfen H (2016) Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm), Angewandte Chemie International Edition, 10.1002/anie.201604179, 55:40, (12206-12209), Online publication date: 26-Sep-2016. Gehl A, Dietzsch M, Mondeshki M, Bach S, Häger T, Panthöfer M, Barton B, Kolb U and Tremel W (2015) Anhydrous Amorphous Calcium Oxalate Nanoparticles from Ionic Liquids: Stable Crystallization Intermediates in the Formation of Whewellite, Chemistry - A European Journal, 10.1002/chem.201502229, 21:50, (18192-18201), Online publication date: 7-Dec-2015. Merk V, Chanana M, Keplinger T, Gaan S and Burgert I (2015) Hybrid wood materials with improved fire retardance by bio-inspired mineralisation on the nano- and submicron level, Green Chemistry, 10.1039/C4GC01862A, 17:3, (1423-1428) Burgert I, Cabane E, Zollfrank C and Berglund L (2016) Bio-inspired functional wood-based materials – hybrids and replicates, International Materials Reviews, 10.1179/1743280415Y.0000000009, 60:8, (431-450), Online publication date: 17-Nov-2015. Long X, Ma Y and Qi L (2014) Biogenic and synthetic high magnesium calcite – A review, Journal of Structural Biology, 10.1016/j.jsb.2013.11.004, 185:1, (1-14), Online publication date: 1-Jan-2014. White C, Henson N, Daemen L, Hartl M and Page K (2014) Uncovering the True Atomic Structure of Disordered Materials: The Structure of a Hydrated Amorphous Magnesium Carbonate (MgCO 3 ·3D 2 O) , Chemistry of Materials, 10.1021/cm500470g, 26:8, (2693-2702), Online publication date: 22-Apr-2014. He H, Veneklaas E, Kuo J and Lambers H (2014) Physiological and ecological significance of biomineralization in plants, Trends in Plant Science, 10.1016/j.tplants.2013.11.002, 19:3, (166-174), Online publication date: 1-Mar-2014. Singer J, Yazaydin A, Kirkpatrick R and Bowers G (2012) Structure and Transformation of Amorphous Calcium Carbonate: A Solid-State 43 Ca NMR and Computational Molecular Dynamics Investigation , Chemistry of Materials, 10.1021/cm300389q, 24:10, (1828-1836), Online publication date: 22-May-2012. Jiang J, Gao M, Xu Y and Yu S (2012) Amorphous Calcium Carbonate: Synthesis and Transformation Bioinspiration, 10.1007/978-1-4614-5372-7_6, (189-220), . Kellermeier M, Melero-García E, Kunz W and García-Ruiz J (2012) The Ability of Silica to Induce Biomimetic Crystallization of Calcium Carbonate Kinetics and Thermodynamics of Multistep Nucleation and Self-Assembly in Nanoscale Materials, 10.1002/9781118309513.ch10, (277-307) Bauer P, Elbaum R and Weiss I (2011) Calcium and silicon mineralization in land plants: Transport, structure and function, Plant Science, 10.1016/j.plantsci.2011.01.019, 180:6, (746-756), Online publication date: 1-Jun-2011. Politi Y, Batchelor D, Zaslansky P, Chmelka B, Weaver J, Sagi I, Weiner S and Addadi L (2009) Role of Magnesium Ion in the Stabilization of Biogenic Amorphous Calcium Carbonate: A Structure−Function Investigation, Chemistry of Materials, 10.1021/cm902674h, 22:1, (161-166), Online publication date: 12-Jan-2010. Gal A, Weiner S and Addadi L (2010) The Stabilizing Effect of Silicate on Biogenic and Synthetic Amorphous Calcium Carbonate, Journal of the American Chemical Society, 10.1021/ja106883c, 132:38, (13208-13211), Online publication date: 29-Sep-2010. Cai G, Zhao G, Wang X and Yu S (2010) Synthesis of Polyacrylic Acid Stabilized Amorphous Calcium Carbonate Nanoparticles and Their Application for Removal of Toxic Heavy Metal Ions in Water, The Journal of Physical Chemistry C, 10.1021/jp103464p, 114:30, (12948-12954), Online publication date: 5-Aug-2010. Kellermeier M, Melero-García E, Glaab F, Klein R, Drechsler M, Rachel R, García-Ruiz J and Kunz W (2010) Stabilization of Amorphous Calcium Carbonate in Inorganic Silica-Rich Environments, Journal of the American Chemical Society, 10.1021/ja106959p, 132:50, (17859-17866), Online publication date: 22-Dec-2010. Xue Z, Hu B, Dai S and Du Z (2010) Templated biomineralization of Au nanoplates under bovine serum albumin Langmuir monolayers, Materials Chemistry and Physics, 10.1016/j.matchemphys.2010.04.011, 123:1, (278-283), Online publication date: 1-Sep-2010. Raiteri P and Gale J (2010) Water Is the Key to Nonclassical Nucleation of Amorphous Calcium Carbonate, Journal of the American Chemical Society, 10.1021/ja108508k, 132:49, (17623-17634), Online publication date: 15-Dec-2010. Amos F, Dai L, Kumar R, Khan S and Gower L (2008) Mechanism of formation of concentrically laminated spherules: implication to Randall's plaque and stone formation, Urological Research, 10.1007/s00240-008-0169-x, 37:1, (11-17), Online publication date: 1-Feb-2009. Xue Z, Hu B, Jia X, Wang H and Du Z (2009) Effect of the interaction between bovine serum albumin Langmuir monolayer and calcite on the crystallization of CaCO3 nanoparticles, Materials Chemistry and Physics, 10.1016/j.matchemphys.2008.07.002, 114:1, (47-52), Online publication date: 1-Mar-2009. Meldrum F and Cölfen H (2008) Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems, Chemical Reviews, 10.1021/cr8002856, 108:11, (4332-4432), Online publication date: 12-Nov-2008. Nebel H, Neumann M, Mayer C and Epple M (2008) On the Structure of Amorphous Calcium Carbonate—A Detailed Study by Solid-State NMR Spectroscopy, Inorganic Chemistry, 10.1021/ic8007409, 47:17, (7874-7879), Online publication date: 1-Sep-2008. Cölfen H Bio-inspired Mineralization Using Hydrophilic Polymers Biomineralization II, 10.1007/128_056, (1-77) Pai R, Neira-Carrillo A, Fernandez M and Arias J (2011) Study of the Architecture of Inorganic-Organic Matrix in the Ventral Segmental Concretion of Porcellius Chilensis Nicolet, 1849 (Crustacea, Isopoda), MRS Proceedings, 10.1557/PROC-1007-s12-21, 1007, . Neumann M and Epple M (2007) Monohydrocalcite and Its Relationship to Hydrated Amorphous Calcium Carbonate in Biominerals, European Journal of Inorganic Chemistry, 10.1002/ejic.200601033, 2007:14, (1953-1957), Online publication date: 1-May-2007. Lam R, Charnock J, Lennie A and Meldrum F (2007) Synthesis-dependant structural variations in amorphous calcium carbonate, CrystEngComm, 10.1039/b710895h, 9:12, (1226), . Politi Y, Levi-Kalisman Y, Raz S, Wilt F, Addadi L, Weiner S and Sagi I (2006) Structural Characterization of the Transient Amorphous Calcium Carbonate Precursor Phase in Sea Urchin Embryos, Advanced Functional Materials, 10.1002/adfm.200600134, 16:10, (1289-1298), Online publication date: 4-Jul-2006. Sikirić M and Füredi-Milhofer H (2006) The influence of surface active molecules on the crystallization of biominerals in solution, Advances in Colloid and Interface Science, 10.1016/j.cis.2006.11.022, 128-130, (135-158), Online publication date: 1-Dec-2006. Nitta I, Kida A, Fujibayashi Y, Katayama H and Sugimura Y (2006) Calcium carbonate deposition in a cell wall sac formed in mulberry idioblasts, Protoplasma, 10.1007/s00709-006-0182-2, 228:4, (201-208), Online publication date: 1-Sep-2006. Fabritius H, Walther P and Ziegler A (2005) Architecture of the organic matrix in the sternal CaCO3 deposits of Porcellio scaber (Crustacea, Isopoda), Journal of Structural Biology, 10.1016/j.jsb.2005.01.004, 150:2, (190-199), Online publication date: 1-May-2005. Dillaman R, Hequembourg S and Gay M (2005) Early pattern of calcification in the dorsal carapace of the blue crab,Callinectes sapidus, Journal of Morphology, 10.1002/jmor.10311, 263:3, (356-374), Online publication date: 1-Mar-2005. Becker A, Ziegler A and Epple M (2005) The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate, Dalton Transactions, 10.1039/b412062k:10, (1814), . Günther C, Becker A, Wolf G and Epple M (2005) In vitro Synthesis and Structural Characterization of Amorphous Calcium Carbonate, Zeitschrift für anorganische und allgemeine Chemie, 10.1002/zaac.200500164, 631:13-14, (2830-2835), Online publication date: 1-Oct-2005. Zhang L, Liu H, Zhang R, Zhang L, Qian D, Mu Y, Yu X and Feng X (2005) The mineralization process of calcium phosphate induced by the LB films of porphyrin, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 10.1016/j.colsurfa.2004.10.041, 257-258, (307-312), Online publication date: 1-May-2005. Melancon S, Fryer B, Ludsin S, Gagnon J and Yang Z (2005) Effects of crystal structure on the uptake of metals by lake trout ( Salvelinus namaycush ) otoliths , Canadian Journal of Fisheries and Aquatic Sciences, 10.1139/f05-161, 62:11, (2609-2619), Online publication date: 1-Nov-2005. Costello M (2005) X-ray diffraction of amorphous and crystalline overbased sulphonates, Tribotest, 10.1002/tt.3020110304, 11:3, (207-212), Online publication date: 1-Mar-2005. Kingsley R, Van Gilder R, LeGeros R and Watabe N (2003) MULTIMINERAL CALCAREOUS DEPOSITS IN THE MARINE ALGA ACETABULARIA ACETABULUM (CHLOROPHYTA; DASYCLADACEAE), Journal of Phycology, 10.1046/j.1529-8817.2003.02169.x, 39:5, (937-947), Online publication date: 1-Oct-2003. Aizenberg J, Weiner S and Addadi L (2009) Coexistence of Amorphous and Crystalline Calcium Carbonate in Skeletal Tissues, Connective Tissue Research, 10.1080/03008200390152034, 44:1, (20-25), Online publication date: 1-Jan-2003. Weiner S, Levi-Kalisman Y, Raz S and Addadi L (2009) Biologically Formed Amorphous Calcium Carbonate, Connective Tissue Research, 10.1080/03008200390181681, 44:1, (214-218), Online publication date: 1-Jan-2003. Raz S, Testeniere O, Hecker A, Weiner S and Luquet G (2002) Stable Amorphous Calcium Carbonate Is the Main Component of the Calcium Storage Structures of the Crustacean Orchestia cavimana , The Biological Bulletin, 10.2307/1543569, 203:3, (269-274), Online publication date: 1-Dec-2002. Beniash E, Aizenberg J, Addadi L and Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth, Proceedings of the Royal Society of London. Series B: Biological Sciences, 264:1380, (461-465), Online publication date: 22-Mar-1997. Aizenberg J, Addadi L, Weiner S and Lambert G (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates, Advanced Materials, 10.1002/adma.19960080307, 8:3, (222-226), Online publication date: 1-Mar-1996. Addadi L, Aizenberg J, Albeck S, Falini G and Weiner S (1995) Structural Control Over the Formation of Calcium Carbonate Mineral Phases in Biomineralization Supramolecular Stereochemistry, 10.1007/978-94-011-0353-4_15, (127-139), . Segovia‐Campos I, Martignier A, Filella M, Jaquet J and Ariztegui D (2021) Micropearls and other intracellular inclusions of amorphous calcium carbonate: an unsuspected biomineralization capacity shared by diverse microorganisms, Environmental Microbiology, 10.1111/1462-2920.15498 Jin W, Jiang S, Pan H and Tang R (2018) Amorphous Phase Mediated Crystallization: Fundamentals of Biomineralization, Crystals, 10.3390/cryst8010048, 8:1, (48) Zhou Q, Du T, Guo L, Sant G and Bauchy M (2020) Role of Internal Stress in the Early-Stage Nucleation of Amorphous Calcium Carbonate Gels, Applied Sciences, 10.3390/app10124359, 10:12, (4359) This Issue22 April 1993Volume 252Issue 1333 Article InformationDOI:https://doi.org/10.1098/rspb.1993.0048Published by:Royal SocietyPrint ISSN:0962-8452Online ISSN:1471-2954History: Manuscript received15/12/1992Manuscript accepted11/02/1993Published online01/01/1997Published in print22/04/1993 License:Scanned images copyright © 2017, Royal Society Citations and impact Large datasets are available through Proceedings B's partnership with Dryad

Referência(s)