Coordination Chemistry of Unsymmetrical Tripodal Ligands with an NNO2 Donor Set
2001; Wiley; Volume: 2001; Issue: 9 Linguagem: Inglês
10.1002/1099-0682(200109)2001
ISSN1099-0682
AutoresC. Ochs, F. Ekkehardt Hahn, Roland Fröhlich,
Tópico(s)Metal-Organic Frameworks: Synthesis and Applications
ResumoEuropean Journal of Inorganic ChemistryVolume 2001, Issue 9 p. 2427-2436 Full Paper Coordination Chemistry of Unsymmetrical Tripodal Ligands with an NNO2 Donor Set Christian Ochs, Christian Ochs Institut für Anorganische und Analytische Chemie, Freie Universität Berlin, Fabeckstraße 34−36, 14195 Berlin, GermanySearch for more papers by this authorF. Ekkehardt Hahn, F. Ekkehardt Hahn Anorganisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 8, 48149 Münster, GermanySearch for more papers by this authorRoland Fröhlich, Roland Fröhlich Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, GermanySearch for more papers by this author Christian Ochs, Christian Ochs Institut für Anorganische und Analytische Chemie, Freie Universität Berlin, Fabeckstraße 34−36, 14195 Berlin, GermanySearch for more papers by this authorF. Ekkehardt Hahn, F. Ekkehardt Hahn Anorganisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 8, 48149 Münster, GermanySearch for more papers by this authorRoland Fröhlich, Roland Fröhlich Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, GermanySearch for more papers by this author First published: 30 July 2001 https://doi.org/10.1002/1099-0682(200109)2001:9 3.0.CO;2-7Citations: 17Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The synthesis of two new tripodal ligands N(CH2CH2NH2)(CH2CH2CH2OH)2 (H4-1) and N[2,3,5-C6H2-(OH)(SCH3)(CH3)](CH2CH2CH2NH2)(CH2CH2CH2OH) (H4-2) is reported. Both tetradentate ligands contain a central tertiary nitrogen atom, as well as two OH and one NH2 functionalized ligand arm. The tripods do not only exhibit an unsymmetrical N2O2 donor set, but also possess two C3 and one C2 chains between the central nitrogen atom and the terminal donors. On coordination of the central tertiary nitrogen atom, the ligands are capable of forming both six- and five-membered chelate rings in their metal complexes. Both ligands react with [Cu(OAc)2·H2O]2 to give the dinuclear copper(II) complexes [Cu(η4-μ-O-H3-1)2Cu](PF6)2 (3) and [(η3-H3-2)Cu(μ-OAc)2Cu(η3-H3-2)]·2CH3CN (4·2CH3CN). The molecular structures of 3 and 4·2CH3CN have been determined by X-ray diffraction. Complex 3 contains two slightly distorted square-pyramidal (τ = 0.181) copper atoms, with O-donors in the apical positions. The dinuclear complex 4, which was synthesized to model the copper site in galactose oxidase, also shows a distorted square-pyramidal coordination geometry (τ = 0.205 and τ = 0.101) around both copper(II) atoms. Complex 4 contains two uncoordinated primary alcohol functionalities of the ligands. In addition, both the ligand H4-2 and its dinuclear copper complex [(η3-H3-2)Cu(μ-OAc)2(η3-H3-2)]·2CH3CN can easily be oxidized to yield free or coordinated phenoxyl radicals, which are stable on the time scale of cyclic voltammetry. References 1 1a J. W. Whittaker, in: Metal Ions in Biological Systems (Eds.: H. Sigel, A. Sigel), M. Dekker, New York 1994, vol. 30, p. 315−359. − Google Scholar 1b J. Stubbe , W. A. van der Donk , Chem. Rev. 1998 , 98 , 705 and references therein. 10.1021/cr9400875 CASPubMedWeb of Science®Google Scholar 2 2a N. Ito , S. E. V. Phillips , K. D. S. Yadav , P. F. Knowles , J. Mol. Biol. 1994 , 238 , 794 . − 10.1006/jmbi.1994.1335 CASPubMedWeb of Science®Google Scholar 2b N. Ito , S. E. V. Phillips , C. Stevens , Z. B. Ogel , M. J. McPherson , J. N. Keen , K. D. S. Yadav , P. F. Knowles , Nature 1991 , 350 , 87 . 10.1038/350087a0 CASPubMedWeb of Science®Google Scholar 3 3a S. Itoh , S. Takayama , R. Arakawa , A. Furuta , M. Komatsu , A. Ishida , S. Takamuku , S. Fukuzumi , Inorg. Chem. 1997 , 36 , 1407 . − 10.1021/ic961144a CASPubMedWeb of Science®Google Scholar 3b M. Ruf , C. G. Pierpont , Angew. Chem. 1998, 110, 1830; Angew. Chem. Int. Ed. 1998 , 37 , 1736 . 10.1002/(SICI)1521-3773(19980703)37:12 3.0.CO;2-V CASWeb of Science®Google Scholar 4 J. Müller , T. Weyhermüller , E. Bill , P. Hildebrandt , L. Ould-Moussa , T. Glaser , K. Wieghardt , Angew. Chem. 1998, 110, 637; Angew. Chem. Int. Ed. 1998 , 37 , 616 . 10.1002/(SICI)1521-3773(19980316)37:5 3.0.CO;2-4 CASPubMedWeb of Science®Google Scholar 5 5a J. A. Halfen , V. G. Young, Jr. , W. B. Tolman , Angew. Chem. 1996, 108, 1832; Angew. Chem. Int. Ed. Engl. 1996 , 35 , 1687 . − 10.1002/anie.199616871 CASWeb of Science®Google Scholar 5b J. A. Halfen , B. A. Jazdzewski , S. Mahapatra , L. M. Berreau , E. C. Wilkinson , L. Que, Jr. , W. B. Tolman , J. Am. Chem. Soc. 1997 , 119 , 8217 . − 10.1021/ja9700663 CASWeb of Science®Google Scholar 5c B. A. Jazdzewski , V. G. Young, Jr. , W. B. Tolman , Chem. Commun. 1998 , 2521 . 10.1039/a806749j CASWeb of Science®Google Scholar 6 6a Y. Wang , T. D. P. Stack , J. Am. Chem. Soc. 1996 , 118 , 13097 . − 10.1021/ja9621354 CASWeb of Science®Google Scholar 6b Y. Wang , J. L. DuBois , B. Hedmann , K. O. Hodgson , T. D. P. Stack , Science 1998 , 279 , 537 . 10.1126/science.279.5350.537 CASPubMedWeb of Science®Google Scholar 7 7a P. Chaudhuri , M. Hess , T. Weyhermüller , K. Wieghardt , Angew. Chem. 1999, 111, 1165; Angew. Chem. Int. Ed. 1999 , 38 , 1095 . − 10.1002/(SICI)1521-3773(19990419)38:8 3.0.CO;2-I CASPubMedWeb of Science®Google Scholar 7b P. Chaudhuri , M. Hess , U. Flörke , K. Wieghardt , Angew. Chem. 1998, 110, 2340; Angew. Chem. Int. Ed. 1998 , 37 , 2217 . 10.1002/(SICI)1521-3773(19980904)37:16 3.0.CO;2-D CASPubMedWeb of Science®Google Scholar 8 H. Adams , N. A. Bailey , I. K. Campbell , D. E. Fenton , Q.-Y. He , J. Chem. Soc., Dalton Trans. 1996 , 2233 and references therein. 10.1039/DT9960002233 CASWeb of Science®Google Scholar 9 M. Vaidyanathan , R. Viswanathan , M. Palaniandavar , T. Balasubramanian , P. Prabhaharan , T. P. Muthiah , Inorg. Chem. 1998 , 37 , 6418 . 10.1021/ic971567s CASPubMedWeb of Science®Google Scholar 10 M. M. Whittaker , W. R. Duncan , J. W. Whittaker , Inorg. Chem. 1996 , 35 , 382 and references therein. 10.1021/ic951116c CASPubMedWeb of Science®Google Scholar 11 11a D. Zurita , C. Scheer , J.-L. Pierre , E. Saint-Aman , J. Chem. Soc., Dalton Trans. 1996 , 4331 . − 10.1039/dt9960004331 CASWeb of Science®Google Scholar 11b D. Zurita , I. Gauthier-Luneau , S. Ménage , J.-L. Pierre , E. Saint-Aman , J. Biol. Inorg. Chem. 1997 , 2 , 46 . − 10.1007/s007750050105 CASWeb of Science®Google Scholar 11c Y. Shimazaki , S. Huth , A. Odani , O. Yamauchi , Angew. Chem. 2000, 112, 1732; Angew. Chem. Int. Ed. 2000 , 39 , 1666 . 10.1002/(SICI)1521-3773(20000502)39:9 3.0.CO;2-O CASPubMedWeb of Science®Google Scholar 12 M. Duggan , N. Ray , B. Hathaway , G. Tomlinson , P. Brint , K. Pelin , J. Chem. Soc., Dalton Trans. 1980 , 1342 . 10.1039/dt9800001342 CASWeb of Science®Google Scholar 13 13a A. M. Dittler-Klingemann , F. E. Hahn , Inorg. Chem. 1996 , 35 , 1996 . − 10.1021/ic9506670 CASWeb of Science®Google Scholar 13b A. M. Dittler-Klingemann , C. Orvig , F. E. Hahn , F. Thaler , C. D. Hubbard , R. van Eldik , S. Schindler , I. Fábián , Inorg. Chem. 1996 , 35 , 7798 . − 10.1021/ic960585r CASWeb of Science®Google Scholar 13c F. Thaler , C. D. Hubbard , F. W. Heinemann , R. van Eldik , S. Schindler , I. Fábián , A. M. Dittler-Klingemann , F. E. Hahn , C. Orvig , Inorg. Chem. 1998 , 37 , 4022 . 10.1021/ic971295t CASPubMedWeb of Science®Google Scholar 14 14a F. E. Hahn , S. Rupprecht , Chem. Ber. 1991 , 124 , 481 . − 10.1002/cber.19911240310 CASWeb of Science®Google Scholar 14b F. E. Hahn , S. Rupprecht , Chem. Ber. 1991 , 124 , 487 . − 10.1002/cber.19911240311 CASWeb of Science®Google Scholar 14c B. Wolff , A. Weiss , Angew. Chem. 1986, 98, 173; Angew. Chem. Int. Ed. Engl. 1986 , 25 , 162 . 10.1002/anie.198601621 Web of Science®Google Scholar 15 E. C. Horning (Ed.), Org. Synth., Coll. Vol. III 1955, 275. Google Scholar 16 L. C. Raiford , J. Am. Chem. Soc. 1919 , 41 , 2072 . 10.1021/ja02233a024 Google Scholar 17 17a K. Brand , W. Schreber , Ber. Dtsch. Chem. Ges. 1942 , 75 , 156 . − 10.1002/cber.19420750210 Google Scholar 17b M. R. Agharahimi , N. A. LeBel , J. Org. Chem. 1995 , 60 , 1856 . 10.1021/jo00111a052 CASWeb of Science®Google Scholar 18 18a I. R. Hardcastle , P. Quayle , E. L. M. Ward , Tetrahedron Lett. 1994 , 35 , 1747 . − 10.1016/0040-4039(94)88335-1 CASWeb of Science®Google Scholar 18b G. Voß , H. Gerlach , Chem. Ber. 1989 , 122 , 1199 . − 10.1002/cber.19891220628 CASWeb of Science®Google Scholar 18c G. Köbrich , P. Buck , Chem. Ber. 1970 , 103 , 1412 . 10.1002/cber.19701030513 CASWeb of Science®Google Scholar 19 19a B. J. Wakefield, Organolithium Methods, Academic Press, London, 1990. − Google Scholar 19b L. Brandsma, H. Verkruijsse, Preparative Polar Organometallic Chemistry, Springer Verlag, Berlin, 1987. Google Scholar 20 S. Cabiddu , A. Maccioni , M. Secci , V. Solinas , Gazz. Chim. Ital. 1969 , 99 , 397 . CASGoogle Scholar 21 S. A. Heininger , J. Org. Chem. 1957 , 22 , 1213 . 10.1021/jo01361a023 CASWeb of Science®Google Scholar 22 T. L. Gresham , J. E. Jansen , F. W. Shaver , J. Am. Chem. Soc. 1948 , 70 , 1003 . 10.1021/ja01183a033 CASWeb of Science®Google Scholar 23 A. W. Addison , T. N. Rao , J. Reedijk , J. van Rijn , G. C. Verschoor , J. Chem. Soc., Dalton Trans. 1984 , 1349 . 10.1039/DT9840001349 CASWeb of Science®Google Scholar 24 C. Ochs , F. E. Hahn , R. Fröhlich , Chem. Eur. J. 2000 , 6 , 2193 . 10.1002/1521-3765(20000616)6:12 3.0.CO;2-A CASPubMedWeb of Science®Google Scholar 25 M. M. Whittaker , P. J. Kersten , N. Nakamura , J. Sanders-Loehr , E. S. Schweizer , J. W. Whittaker , J. Biol. Chem. 1996 , 271 , 681 . 10.1074/jbc.271.2.681 CASPubMedWeb of Science®Google Scholar Citing Literature Volume2001, Issue9September 2001Pages 2427-2436 ReferencesRelatedInformation
Referência(s)