Artigo Acesso aberto Revisado por pares

Poor immunogenicity of a self/tumor antigen derives from peptide–MHC-I instability and is independent of tolerance

2004; American Society for Clinical Investigation; Volume: 114; Issue: 4 Linguagem: Inglês

10.1172/jci21695

ISSN

1558-8238

Autores

Zhiya Yu, Marc R. Theoret, Christopher E. Touloukian, Deborah R. Surman, Scott C. Garman, Lionel Feigenbaum, Tiffany K. Baxter, Brian M. Baker, Nicholas P. Restifo,

Tópico(s)

Immune Cell Function and Interaction

Resumo

Understanding the mechanisms underlying the poor immunogenicity of human self/tumor antigens is challenging because of experimental limitations in humans. Here, we developed a human-mouse chimeric model that allows us to investigate the roles of the frequency and self-reactivity of antigen-specific T cells in determination of the immunogenicity of an epitope (amino acids 209-217) derived from a human melanoma antigen, gp100. In these transgenic mice, CD8+ T cells express the variable regions of a human T cell receptor (hTCR) specific for an HLA-A*0201-restricted gp100(209-217). Immunization of hTCR-transgenic mice with gp100(209-217) peptide elicited minimal T cell responses, even in mice in which the epitope was knocked out. Conversely, a modified epitope, gp100(209-217(2M)), was significantly more immunogenic. Both biological and physical assays revealed a fast rate of dissociation of the native peptide from the HLA-A*0201 molecule and a considerably slower rate of dissociation of the modified peptide. In vivo, the time allowed for dissociation of peptide-MHC complexes on APCs prior to their exposure to T cells significantly affected the induction of immune responses. These findings indicate that the poor immunogenicity of some self/tumor antigens is due to the instability of the peptide-MHC complex rather than to the continual deletion or tolerization of self-reactive T cells.

Referência(s)