Artigo Revisado por pares

Independent Component Analysis–Based Feature Extraction Technique for Defect Classification Applied for Pulsed Eddy Current NDE

2009; Taylor & Francis; Volume: 20; Issue: 4 Linguagem: Inglês

10.1080/09349840903078996

ISSN

1432-2110

Autores

Guang Yang, Gui Yun Tian, Pei Wen Que, Tian Lu Chen,

Tópico(s)

Ultrasonics and Acoustic Wave Propagation

Resumo

With the development of nondestructive detection, the emerging testing techniques provide new challenges to signal analysis and interpretation approach applied to the inspection evaluation. Some researchers have developed the methods that focus on feature analysis of detected signals. This article presents a new feature analysis by the Independent Component Analysis (ICA) approach to evaluate the defects tested by the pulsed eddy current (PEC) technique. ICA is a high-order statistics technique used to separate multi-unknown sources, which has been successfully applied to facial image identification and separation of the components of 1D signal. In this article, the ICA approach is utilized to project the response signals of various defects into the independent components (ICs) feature subspace by signal representation model. Dependent on the selected ICs, each defect is represented by different projected coefficients, which are proposed to discriminate and classify the defects that belong to three categories. The improved ICA model is proposed to improve the classification of two similar categories of single defects: metal loss and subsurface defects. The evaluation using the series of experimental data has validated the classification of single defects and the defects with lift-off effect by our ICA approach. The comparison with Principal component analysis (PCA)–based approach further verified the better performance of the ICA-based model.

Referência(s)