Artigo Revisado por pares

A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential

2007; Wiley; Volume: 65; Issue: 5 Linguagem: Inglês

10.1111/j.1365-2958.2007.05857.x

ISSN

1365-2958

Autores

Thomas Meier, Nina Morgner, Doreen Matthies, Denys Pogoryelov, Stefanie Keis, Gregory M. Cook, Peter Dimroth, Bernhard Brutschy,

Tópico(s)

Photosynthetic Processes and Mechanisms

Resumo

Despite the thermodynamic problem imposed on alkaliphilic bacteria of synthesizing adenosine triphosphate (ATP) against a large inverted pH gradient and consequently a low electrochemical proton potential, these bacteria still utilize a proton-coupled F(1)F(o)-ATP synthase to synthesize ATP. One potential solution to this apparent thermodynamic problem would be the operation of a larger oligomeric c ring, which would raise the ion to ATP ratio, thus facilitating the conversion of a low electrochemical potential into a significant phosphorylation potential. To address this hypothesis, we have purified the oligomeric c ring from the thermoalkaliphilic bacterium Bacillus sp. strain TA2.A1 and determined the number of c-subunits using a novel mass spectrometry method, termed 'laser-induced liquid bead ion desorption' (LILBID). This technique allows the mass determination of non-covalently assembled, detergent-solubilized membrane protein complexes, and hence enables an accurate determination of c ring stoichiometries. We show that the Bacillus sp. strain TA2.A1 ATP synthase harbours a tridecameric c ring. The operation of a c ring with 13 subunits renders the thermodynamic problem of ATP synthesis at alkaline pH less severe and may represent a strategy for ATP synthesis at low electrochemical potential.

Referência(s)
Altmetric
PlumX