PERCOLATION AND TUNNELING IN COMPOSITE MATERIALS
2004; World Scientific; Volume: 18; Issue: 15 Linguagem: Inglês
10.1142/s0217979204025336
ISSN1793-6578
AutoresI. Balberg, Doron Azulay, D. Toker, Oded Millo,
Tópico(s)Diamond and Carbon-based Materials Research
ResumoClassical percolation theory is concerned with the onset of geometrical connectivity and the accompanied onset of electrical connectivity in disordered systems. It was found, however, that in many systems, such as various composites, the geometrical and electrical onsets of the connectivity are not simultaneous and the correlation between them depends on physical processes such as tunneling. The difference between the above two types of systems and the consequences for the electrical transport properties of the latter composites have been largely ignored in the past. The application of scanning local probe microscopies and some recent theoretical developments have enabled a better understanding of the latter systems and their sometimes "strange" behavior as bona fide percolation systems. In this review we consider the above issues and their manifestation in three types of systems: Carbon Black–Polymer composites, metal–insulator cermets and hydrogenated microcrystalline silicon.
Referência(s)