Artigo Revisado por pares

Ene Reaction of Singlet Oxygen, Triazolinedione, and Nitrosoarene with Chiral Deuterium-Labeled Allylic Alcohols: The Interdependence of Diastereoselectivity and Regioselectivity Discloses Mechanistic Insights into the Hydroxy-Group Directivity

2002; American Chemical Society; Volume: 124; Issue: 48 Linguagem: Inglês

10.1021/ja027800p

ISSN

1943-2984

Autores

Waldemar Adam, Nils Bottke, Oliver Krebs, Ioannis N. Lykakis, Michael Orfanopoulos, Manolis Stratakis,

Tópico(s)

Synthesis and Catalytic Reactions

Resumo

The ene reaction of singlet oxygen (1O2), triazolinedione (TAD), and nitrosoarene, specifically 4-nitronitrosobenzene (ArNO), with the tetrasubstituted 1,3-allylically strained, chiral allylic alcohol 3,4-dimethylpent-3-en-2-ol (2) leads to the threo-configured ene products in high diastereoselectivity, a consequence of the hydroxy-group directivity. Hydrogen bonding favors formation of the threo-configured encounter complex threo-EC in the early stage of ene reaction. For the analogous twix deuterium-labeled allylic alcohol Z-2-d3, a hitherto unrecognized dichotomy between 1O2 and the ArNO and TAD enophiles is disclosed in the regioselectivity of the tetrasubstituted alcohol: Whereas for ArNO and TAD, hydrogen bonding with the allylic hydroxy group dictates the regioselectivity (twix selectivity), for 1O2, the cis effect dominates (twin/trix selectivity). From the interdependence between the twix/twin regioselectivity and the threo/erythro diastereoselectivity, it has been recognized that the enophile also attacks the allylic alcohol from the erythro π face without assistance by hydrogen bonding with the allylic hydroxy functionality.

Referência(s)