Ene Reaction of Singlet Oxygen, Triazolinedione, and Nitrosoarene with Chiral Deuterium-Labeled Allylic Alcohols: The Interdependence of Diastereoselectivity and Regioselectivity Discloses Mechanistic Insights into the Hydroxy-Group Directivity
2002; American Chemical Society; Volume: 124; Issue: 48 Linguagem: Inglês
10.1021/ja027800p
ISSN1943-2984
AutoresWaldemar Adam, Nils Bottke, Oliver Krebs, Ioannis N. Lykakis, Michael Orfanopoulos, Manolis Stratakis,
Tópico(s)Synthesis and Catalytic Reactions
ResumoThe ene reaction of singlet oxygen (1O2), triazolinedione (TAD), and nitrosoarene, specifically 4-nitronitrosobenzene (ArNO), with the tetrasubstituted 1,3-allylically strained, chiral allylic alcohol 3,4-dimethylpent-3-en-2-ol (2) leads to the threo-configured ene products in high diastereoselectivity, a consequence of the hydroxy-group directivity. Hydrogen bonding favors formation of the threo-configured encounter complex threo-EC in the early stage of ene reaction. For the analogous twix deuterium-labeled allylic alcohol Z-2-d3, a hitherto unrecognized dichotomy between 1O2 and the ArNO and TAD enophiles is disclosed in the regioselectivity of the tetrasubstituted alcohol: Whereas for ArNO and TAD, hydrogen bonding with the allylic hydroxy group dictates the regioselectivity (twix selectivity), for 1O2, the cis effect dominates (twin/trix selectivity). From the interdependence between the twix/twin regioselectivity and the threo/erythro diastereoselectivity, it has been recognized that the enophile also attacks the allylic alcohol from the erythro π face without assistance by hydrogen bonding with the allylic hydroxy functionality.
Referência(s)