Artigo Revisado por pares

Binding of fibrinogen to platelet integrin αIIbβ3 in solution as monitored by tracer sedimentation equilibrium

1996; Wiley; Volume: 9; Issue: 1 Linguagem: Inglês

10.1002/(sici)1099-1352(199601)9

ISSN

1099-1352

Autores

Germán Rivas, Kirsten Tangemann, Allen P. Minton, Jürgen Engel,

Tópico(s)

Cell Adhesion Molecules Research

Resumo

Journal of Molecular RecognitionVolume 9, Issue 1 p. 31-38 Article Binding of fibrinogen to platelet integrin αIIbβ3 in solution as monitored by tracer sedimentation equilibrium Germán Rivas, Corresponding Author Germán Rivas Biozentrum, University of Basel, Basel, SwitzerlandCentro de Investigaciones biológicas, CSIC, Velázquez 144, 28006-Madrid, SpainSearch for more papers by this authorKirsten Tangemann, Kirsten Tangemann Biozentrum, University of Basel, Basel, SwitzerlandSearch for more papers by this authorAllen P. Minton, Allen P. Minton Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, U.S.A.Search for more papers by this authorJürgen Engel, Jürgen Engel Biozentrum, University of Basel, Basel, SwitzerlandSearch for more papers by this author Germán Rivas, Corresponding Author Germán Rivas Biozentrum, University of Basel, Basel, SwitzerlandCentro de Investigaciones biológicas, CSIC, Velázquez 144, 28006-Madrid, SpainSearch for more papers by this authorKirsten Tangemann, Kirsten Tangemann Biozentrum, University of Basel, Basel, SwitzerlandSearch for more papers by this authorAllen P. Minton, Allen P. Minton Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, U.S.A.Search for more papers by this authorJürgen Engel, Jürgen Engel Biozentrum, University of Basel, Basel, SwitzerlandSearch for more papers by this author First published: January/February 1996 https://doi.org/10.1002/(SICI)1099-1352(199601)9:1 3.0.CO;2-OCitations: 10AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Fibrinogen showed essentially no binding (KD>1 mM) to platelet αIIbβ3 integrin in solution in the presence of Triton or octylglucoside above critical micellar concentrations. Under these conditions the integrin was an αβ monomer. After removal of the detergent from the Triton containing buffer (25 mM Tris/HCl;, 150 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, pH 7.4) the integrin formed aggregates with hexamers as the most prominent species, as demonstrated by analytical ultracentrifugation and electron microscopy. Tracer sedimentation equilibrium experiments indicate that fibrinogen binds to the integrin aggregates, but with a surprisingly large KD (at least 3 μM). This value is 10- to 100-fold higher than values determined by solid phase assays or with integrins reconstituted onto lipid bilayers. References Aumailley, M., Gurrath, M., Müller, G., Calvete, J. J., Timpl, R. and Kessler, H. (1991). Identification of the Arg-Gly-Asp sequence in laminin A chain as a latent cell-binding site being exposed in fragment P1. FEBS Lett. 290, 50–54. 10.1016/0014-5793(91)81101-D Web of Science®Google Scholar Calvete, J. J., Mann, K., Alvarez, M. V., López, M. M. and González-Rodriguez, J. (1992a). Proteolytic dissection of the isolated platelet fibrinogen receptor, integrin GPllb/llla. Localization of GPllb and GPllla sequences putatively involved in the subunit interface and in intra-subunit and intrachain contacts. Biochem. J. 282, 523–532. 10.1042/bj2820523 CASPubMedWeb of Science®Google Scholar Calvete, J. J., Schäfer, W., Mann, K., Henschen, A. and González-Rodriguez, J. (1992b). Localization of the cross-linking sites for RGD and KQAGDV peptides to the isolated fibrinogen receptor, the human platelet integrin glycoprotein llb/llla. Influence of peptide length. Eur. J. Biochem. 206, 759–765. 10.1111/j.1432-1033.1992.tb16982.x CASPubMedWeb of Science®Google Scholar Carrell, N. A., Fitzgerald, L. A., Steiner, B., Erickson, H. P. and Phillips, D. R. (1985). Structure of human platelet membrane glycoproteins llb and llla as determined by electron microscopy. J. Biol. Chem. 260, 17743–17749. Google Scholar Charo, I. F., Nannizzi, L., Phillips, D. R., Hsu, M. A. and Scarborough, R. M. (1991). Inhibition of fibrinogen binding to GPllb-llla by a GPllla peptide. J. Biol. Chem. 266, 1415–1421. CASPubMedWeb of Science®Google Scholar Chatelier, R. C. and Minton, A. P. (1987). Sedimentation equilibrium in macromolecular solutions of arbitary concentration. II. Two protein components. Biopolymers 26, 1097–1113. 10.1002/bip.360260709 CASPubMedWeb of Science®Google Scholar Crothers, D. M. and Metzger, H. (1972). The influence of polyvalency on the binding properties of antibodies. Immunochemistry 9, 341–357. 10.1016/0019-2791(72)90097-3 CASPubMedWeb of Science®Google Scholar Darawshe, S., Rivas, G. and Minton, A. P. (1993). Rapid and accurate microfractionation of the contents of small centrifuge tubes: application in the measurement of molecular weights of proteins via sedimentation equilibrium. Anal. Biochem. 209, 130–135. 10.1006/abio.1993.1092 CASPubMedWeb of Science®Google Scholar Du, X., Plow, E. F., Frelinger III, A. L., O'Toole, T. E., Loftus, J. C. and Ginsberg, M. H. (1991). Ligands 'activate' integrin αllbβ3 (platelet GPllb-llla). Cell 65, 409–416. 10.1016/0092-8674(91)90458-B CASPubMedWeb of Science®Google Scholar Durchschlag, H. (1986). Specific volumes of biological macromolecules and some other molecules of biological interest. In Thermodynamic Data for Biochemistry and Biotechnology, ed. by H. J. Hinz, pp. 45–128. Springer-Verlag, Berlin. 10.1007/978-3-642-71114-5_3 Google Scholar Eirin, M. T., Calvete, J. J. and Gonzalez-Rodriguez, J. (1986). New isolation procedure and further biochemical characterization of glycoproteins llb and llla from human platelet plasma membrane. Biochem. J. 240, 147–153. 10.1042/bj2400147 CASPubMedWeb of Science®Google Scholar Ginsberg, M. H., Frelinger III, A. L., Lam, S. C.-T., Forsyth, J., McMillan, R., Plow, E. F. and Shattil, S. J. (1990). Analysis of platelet aggregation disorders based on flow cytometric analysis of membrane glycoprotein llb-llla with conformation-specific monoclonal antibodies. Blood 76, 2017–2023. CASPubMedWeb of Science®Google Scholar S. E. Harding, A. Horton and A. Rowe (Eds) (1993). Analytical Ultracentrifugation in Biochemistry and Polymer Science. Royal Society of Chemistry, London. Google Scholar Hsu, C. S. and Minton, A. P. (1991). A strategy for efficient characterization of macromolecular hetero-associations via measurement of sedimentation equilibrium. J. Mol. Recogn 4, 93–104. 10.1002/jmr.300040208 CASGoogle Scholar Huber, W., Hurst, J., Schlatter, D., Barner, R., Hübscher, J., Kouns, W. C. and Steiner, B. (1995). Determination of kinetic constants for the interaction between the platelet glycoprotein llb-llla and fibrinogen by means of surface plasmon resonance. Eur. J. Biochem. 227, 647–656. 10.1111/j.1432-1033.1995.0647p.x CASPubMedWeb of Science®Google Scholar Hynes, R. O. (1992). Integrins. Versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25. 10.1016/0092-8674(92)90115-S CASPubMedWeb of Science®Google Scholar Ingham., K. C., Landwehr, R. and Engel, J. (1985). Interaction of fibronectin with C1q and collagen. Effect of ionic strength and denaturation of the collagenous component. Eur. J. Biochem. 148, 219–224. 10.1111/j.1432-1033.1985.tb08828.x CASPubMedWeb of Science®Google Scholar Kieffer, N. and Phillips, D. R. (1990). Platelet membrane glycoproteins: functions in cellular interactions. Annu. Rev. Cell. Biol. 6, 329–357. 10.1146/annurev.cb.06.110190.001553 CASPubMedWeb of Science®Google Scholar Kirschbaum, N. E., Mosesson, M. W. and Amrani, D. L. (1992). Characterization of the gamma chain platelet binding site on fibrinogen fragment D. Blood 79, 2643–2648. CASPubMedWeb of Science®Google Scholar Kouns, W. C., Hadvary, P., Haering, P. and Steiner, B. (1992). Conformational modulation of purified glycoprotein (GP) llb–llla allows proteolytic generation of active fragments from either active or inactive GPllb-llla. J. Biol. Chem. 267, 18844–18851. CASPubMedWeb of Science®Google Scholar Lakatos, S. and Minton, A. P. (1991). Interaction between globular proteins and F-actin in isotonic saline solution. J. Biol. Chem. 266, 18707–8713. CASPubMedWeb of Science®Google Scholar Laki, K. (1951). The polymerization of proteins: the action of thrombin on fibrinogen. Arch. Biochem. Biophys. 32, 317–324. 10.1016/0003-9861(51)90277-9 CASPubMedWeb of Science®Google Scholar Laue, T. M. (1992). Short-column sedimentation equilibrium. Technical Information DS-835, Beckman Instruments Inc., Palo Alto, CA. Google Scholar Laue, T. M., Shah, B. D., Ridgeway, T. M. and Pelletier, S. L. (1993). Computer-aided interpretation of analytical sedimentation data for proteins. In Analytical Ultracentrifugation in Biochemistry and Polymer Science, ed. by S. E. Harding, A. Horton and A. Rowe, pp. 90–125. Royal Society of Chemistry, London. Google Scholar Legrand, C., Dubernard, V. and Nurden, A. T. (1985). Characterization of collagen-induced fibrinogen binding to human platelets. Biochim. Biophys. Acta 812, 802–812. 10.1016/0005-2736(85)90275-5 CASPubMedWeb of Science®Google Scholar Marguerie, G. A., Edgington, T. S. and Plow, E. F. (1980). Interaction of fibrinogen with its platelet receptor as a part of a multistep reaction in ADP-induced platelet aggregation. J. Biol. Chem. 255, 154–161. CASPubMedWeb of Science®Google Scholar Minton, A. P. (1990). Quantitative characterization of reversible molecular associations via analytical centrifugation. Anal. Biochem. 190, 1–6. 10.1016/0003-2697(90)90125-S CASPubMedWeb of Science®Google Scholar Minton, A. P. (1994). Conservation of signal: a new algorithm for the elimination of the reference concentration as an independently variable parameter in the analysis of sedimentation equilibrium. In Modern Analytical Ultracentrifugation, ed. by T. M. Schuster and T. M. Laue, pp. 81–93. Birkhäuser, Boston. 10.1007/978-1-4684-6828-1_5 Google Scholar Miyamoto, S., Akiyama, S. K. and Yamada, K. M. (1995). Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267, 883–885. 10.1126/science.7846531 CASPubMedWeb of Science®Google Scholar Müller, B., Zerwes, H.-G., Tangemann, K., Peter, J. and Engel, J. (1993). Two-step binding mechanism of fibrinogen αllbβ3 integrin reconstituted into planar lipid bilayers. J. Biol. Chem. 268, 6800–6808. PubMedWeb of Science®Google Scholar Nachman, R. L. and Leung, L. L. K. (1982). Complex formation of platelet membrane glycoproteins llb and llla with fibrinogen. J. Clin. Invest. 69, 263–269. 10.1172/JCI110448 CASPubMedWeb of Science®Google Scholar Nachman, R. L., Leung, L. L. K., Kloczewiak, M. and Hawiger, J. (1974). Complex formation of platelet membrane glycoproteins llb and llla with fibrinogen D domain. J. Biol. Chem. 259, 8584–8588. PubMedWeb of Science®Google Scholar Nermut, M. V., Green, N. M., Eason, P., Yamada, S. S. and Yamada, K. M. (1988). Electron microscopy and structural model of human fibronectin receptor. EMBO J. 7, 4093–4099. 10.1002/j.1460-2075.1988.tb03303.x CASPubMedWeb of Science®Google Scholar Parise, L. V. and Phillips, D. R. (1985a). Platelet membrane glycoprotein llb-llla complex incorporated into phospholipid vesicles. J. Biol. Chem. 260, 1750–1756. CASPubMedWeb of Science®Google Scholar Parise, L. V. and Phillips, D. R. (1985b). Reconstitution of the purified platelet fibrinogen receptor. Fibrinogen binding properties of the glycoprotein llb-llla complex. J. Biol. Chem. 260, 10698–10707. CASPubMedWeb of Science®Google Scholar Pfaff, M., Tangemann, K., Müller, B., Gurrath, M., Müller, G., Kessler, H., Timpl, R. and Engel, J. (1994). Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha llb beta 3, alpha v beta 3, and alpha 5 beta 1 integrins. J. Biol. Chem. 269, 20233–20238. CASPubMedWeb of Science®Google Scholar Phillips, D. R. and Baugman, A. K. (1983). Fibrinogen binding to human platelet plasma membranes. Identification of two steps requiring divalent cations. J. Biol. Chem. 258, 10240–10246. CASPubMedWeb of Science®Google Scholar Phillips, D. R., Charo, I. F. and Scarborough, R. M. (1991). GPllbllla: the responsive integrin. Cell 65, 359–362. 10.1016/0092-8674(91)90451-4 CASPubMedWeb of Science®Google Scholar Plow, E. F. and Ginsberg, M. H. (1989). Cellular adhesion: GPllbllla as a prototypic adhesion receptor. Prog. Hemostasis Thromb. 9, 117–156. CASPubMedWeb of Science®Google Scholar Reynolds, J. A. (1979). Interaction of divalent antibody with cell surface antigens. Biochemistry 18, 264–269. 10.1021/bi00569a004 CASPubMedWeb of Science®Google Scholar Reynolds, J. A. and McCaslin, D. R. (1985). Determination of protein molecular weight in complexes with detergents without knowledge of binding. Methods Enzymol. 61, 58–62. 10.1016/0076-6879(79)61007-8 Google Scholar Rivas, G. (1989). Isolation and molecular characterization of the integrin GPllb/llla (the platelet fibrinogen receptor) and its constituent subunits GPllb and GPllla. Doctoral Thesis, Universidad Autonoma, Madrid, Spain. Google Scholar Rivas, G. A. and Gonzalez-Rodriguez, J. (1991). Calcium binding to human platelet integrin GPllb/llla and to its constituent glycoproteins. Effect of lipids and temperature. Biochem. J. 276, 35–40. 10.1042/bj2760035 CASPubMedWeb of Science®Google Scholar Rivas, G. and Minton, A. P. (1993). New developments in the study of biomolecular associations via sedimentation equilibrium. Trends Biochem. Sci. 18, 284–287. 10.1016/0968-0004(93)90035-L CASPubMedWeb of Science®Google Scholar Rivas, G. A., Aznarez, J. A., Usobiaga, P., Saiz, J. L. and Gonzalez-Rodriguez, J. (1991a). Molecular characterization of the human platelet integrin GPllb/llla and its constituent glycoproteins. Eur. Biophys. J. 19, 335–345. 10.1007/BF00183324 CASPubMedWeb of Science®Google Scholar Rivas, G. A., Calvete, J. J., and Gonzalez-Rodriguez, J. (1991b). A large-scale procedure for the isolation of integrin GPllb/llla, the human platelet fibrinogen receptor. Prot. Express. Purif. 2, 248–255. 10.1016/1046-5928(91)90080-3 CASPubMedGoogle Scholar Rivas, G., Ingham, K. C. and Minton, A. P. (1992). Calcium-linked association of human complement C1s. Biochemistry 31, 11707–11710. 10.1021/bi00162a006 CASPubMedWeb of Science®Google Scholar Rivas, G., Ingham, K. C. and Minton, A. P. (1994). Calcium-linked hetero-association between human complement C1s and C1r. Biochemistry 33, 2341–2348. 10.1021/bi00174a048 CASPubMedWeb of Science®Google Scholar Schultze, H. E. and Heremans, J. L. (1966). In Molecular Biology of Human Proteins, Vol. 1, pp. 176–181. Elsevier, Amsterdam. Google Scholar T. M. Schuster and T. M. Laue (Eds) (1994). Modern Analytical Ultracentrifugation. Birkhäuser, Boston. Google Scholar Smyth, S. S., Hillery, C. A. and Parise, L. V. (1992). Fibrinogen binding to purified platelet glycoprotein llb–llla (integrin αllbβ3) is modulated by lipids. J. Biol. Chem. 267, 15568–15577. CASPubMedWeb of Science®Google Scholar Smith, J. W., Piotrowicz, R. S. and Mathis, D. (1994). A mechanism for divalent cation regulation of β3-integrins. J. Biol. Chem. 269, 960–967. 10.1016/S0021-9258(17)42205-8 CASPubMedWeb of Science®Google Scholar Tanford, C., Nozaki, Y., Reynolds, J. A. and Makino, S. (1974). Molecular characterization of proteins in detergent solutions. Biochemistry 13, 2369–2376. 10.1021/bi00708a021 CASPubMedWeb of Science®Google Scholar Tangemann, K. and Engel, J. (1995). Demonstration of nonlinear detection in ELISA resulting in up to 1000-fold too high affinities of fibrinogen binding to integrin αllbβ3. FEBS Lett. 358, 179–181. 10.1016/0014-5793(94)01411-S CASPubMedWeb of Science®Google Scholar Usobiaga, P., Calvete, J. J., Saiz, J. L., Eirin, M. T. and Gonzalez-Rodriguez, J. (1987). Molecular characterization of human platelet glycoproteins llla and llb and the subunits of the latter. Eur. Biophys. J. 14, 211–218. 10.1007/BF00256354 CASPubMedWeb of Science®Google Scholar van der Merwe, P. A. and Barclay, A. N. (1994). Transient intercellular adhesion: the importance of weak protein–protein interactions. Trends Biochem. Sci. 19, 354–358. 10.1016/0968-0004(94)90109-0 CASPubMedWeb of Science®Google Scholar Weisel, J. W., Nagaswami, C., Vilaire, G., and Bennett, J. S. (1992). Examination of the platelet membrane glycoprotein llb–llla complex and its interaction with fibrinogen and other ligands by electron microscopy. J. Biol. Chem. 267, 16637–16643. CASPubMedWeb of Science®Google Scholar Citing Literature Volume9, Issue1January/February 1996Pages 31-38 ReferencesRelatedInformation

Referência(s)