Helix-Forming Oligoureas: Temperature-Dependent NMR, Structure Determination, and Circular Dichroism of a Nonamer with Functionalized Side Chains
2002; Wiley; Volume: 85; Issue: 11 Linguagem: Inglês
10.1002/1522-2675(200211)85
ISSN1522-2675
AutoresChristine Hemmerlin, Michel Marraud, Didier Rognan, R. Graff, Vincent Semetey, Jean‐Paul Briand, Gilles Guichard,
Tópico(s)Plant Molecular Biology Research
ResumoHelvetica Chimica ActaVolume 85, Issue 11 p. 3692-3711 Research Article Helix-Forming Oligoureas: Temperature-Dependent NMR, Structure Determination, and Circular Dichroism of a Nonamer with Functionalized Side Chains Christine Hemmerlin, Christine Hemmerlin LCPM, UMR CNRS-INPL 7568, ENSIC-INPL, B.P. 451, F-54001 NancySearch for more papers by this authorMichel Marraud, Michel Marraud LCPM, UMR CNRS-INPL 7568, ENSIC-INPL, B.P. 451, F-54001 NancySearch for more papers by this authorDidier Rognan, Didier Rognan Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS, ULP 7081, 74 Route du Rhin, B.P. 24, F-67401 IllkirchSearch for more papers by this authorRoland Graff, Roland Graff Faculté de Chimie, 1 Rue Blaise Pascal, F-67008 StrasbourgSearch for more papers by this authorVincent Semetey, Vincent Semetey Immunologie et Chimie Thérapeutiques, UPR CNRS 9021, Institut de Biologie Moléculaire et Cellulaire, 15 Rue Descartes, F-67084 StrasbourgSearch for more papers by this authorJean-Paul Briand, Jean-Paul Briand Immunologie et Chimie Thérapeutiques, UPR CNRS 9021, Institut de Biologie Moléculaire et Cellulaire, 15 Rue Descartes, F-67084 StrasbourgSearch for more papers by this authorGilles Guichard, Gilles Guichard Immunologie et Chimie Thérapeutiques, UPR CNRS 9021, Institut de Biologie Moléculaire et Cellulaire, 15 Rue Descartes, F-67084 StrasbourgSearch for more papers by this author Christine Hemmerlin, Christine Hemmerlin LCPM, UMR CNRS-INPL 7568, ENSIC-INPL, B.P. 451, F-54001 NancySearch for more papers by this authorMichel Marraud, Michel Marraud LCPM, UMR CNRS-INPL 7568, ENSIC-INPL, B.P. 451, F-54001 NancySearch for more papers by this authorDidier Rognan, Didier Rognan Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR CNRS, ULP 7081, 74 Route du Rhin, B.P. 24, F-67401 IllkirchSearch for more papers by this authorRoland Graff, Roland Graff Faculté de Chimie, 1 Rue Blaise Pascal, F-67008 StrasbourgSearch for more papers by this authorVincent Semetey, Vincent Semetey Immunologie et Chimie Thérapeutiques, UPR CNRS 9021, Institut de Biologie Moléculaire et Cellulaire, 15 Rue Descartes, F-67084 StrasbourgSearch for more papers by this authorJean-Paul Briand, Jean-Paul Briand Immunologie et Chimie Thérapeutiques, UPR CNRS 9021, Institut de Biologie Moléculaire et Cellulaire, 15 Rue Descartes, F-67084 StrasbourgSearch for more papers by this authorGilles Guichard, Gilles Guichard Immunologie et Chimie Thérapeutiques, UPR CNRS 9021, Institut de Biologie Moléculaire et Cellulaire, 15 Rue Descartes, F-67084 StrasbourgSearch for more papers by this author First published: 06 December 2002 https://doi.org/10.1002/1522-2675(200211)85:11 3.0.CO;2-WCitations: 48AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract To further investigate the degree of structural homology between γ-peptides A and N,N′-linked oligoureas B, we prepared oligourea nonamer 2 containing Ala, Val, Leu, Phe, Tyr and Lys side chains. Oligomer 2 was synthesized on solid support from activated monomers, i.e., from enantiomerically pure succinimidyl {2-{[(9H-fluoren-9-ylmethoxy)carbonyl]amino}ethyl}carbamates 3a–f that are further substituted at C(2) of the ethyl moiety. These precursors were conveniently prepared from N-Fmoc-protected β3-amino acids with corresponding side chains. Detailed NMR studies (DQF-COSY, TOCSY, and ROESY) in (D5)pyridine revealed that 2 adopts a regular (P)-2.5 helical secondary structure very similar to that previously determined for oligourea heptamer 1 and closely related to the (P)-2.614 helix of γ-peptides. Temperature-dependent NMR further demonstrated the conformational homogeneity and remarkable stability of the structure of 2 in pyridine. The CD spectrum of 2 (0.2 mM) was recorded in MeOH with the aim to gain more information about the conformation of oligoureas. In contrast to 2.6-helical γ-peptides, which display only a weak or no Cotton effect, oligourea 2 exhibits an intense positive Cotton effect at ca. 203 nm ([Θ]=+373000 deg cm2 dmol−1) that decreases only slowly upon increasing the temperature. References 1 D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes, J. S. Moore, Chem. Rev. 2001, 101, 3893; M. S. Cubberley, B. L. Iverson, Curr. Opin. Chem. Biol. 2001, 5, 650; K. D. Stigers, J. S. Nowick, Curr. Opin. Chem. Biol. 1999, 3, 714; K. Kirshenbaum, R. N. Zuckermann, K. A. Dill, Curr. Opin. Struct. Biol. 1999, 9, 530; S. H. Gellman, Acc. Chem. Res. 1998, 31, 173. 2a D. Seebach, M. Overhand, F. N. M. Kühnle, B. Martinoni, L. Oberer, U. Hommel, H. Widmer, Helv. Chim. Acta 1996, 79, 913; 2b D. Seebach, P. E. Ciceri, M. Overhand, B. Jaun, D. Rigo, L. Oberer, U. Hommel, R. Amstutz, H. Widmer, Helv. Chim. Acta 1996, 79, 2043; 2c D. Seebach, S. Abele, K. Gademann, G. Guichard, T. Hintermann, B. Jaun, J. L. Matthews, J. V. Schreiber, L. Oberer, U. Hommel, H. Widmer, Helv. Chim. Acta 1998, 79, 932; 2d S. Abele, G. Guichard, D. Seebach, Helv. Chim. Acta 1998, 81, 2141; 2e Karl Gademann, B. Jaun, D. Seebach, R. Perozzo, L. Scapozza, G. Folkers, Helv. Chim. Acta 1999, 82, 1; 2f D. Seebach, T. Sifferlen, P. A. Mathieu, A. M. Häne, C. M. Krell, D. J. Bierbaum, S. Abele, Helv. Chim. Acta 2000, 83, 2849. 3 D. Seebach, S. Abele, Karl Gademann, B. Jaun, Angew. Chem. 1999, 111, 1700; Angew. Chem., Int. Ed. 1999, 38, 1595. 4a T. Hintermann, K. Gademann, B. Jaun, D. Seebach, Helv. Chim. Acta 1998, 81, 983; 4b D. Seebach, M. Brenner, M. Rueping, B. Schweizer, B. Jaun, Chem. Commun. 2001, 207; 4c M. Brenner, D. Seebach, Helv. Chim. Acta 2001, 84, 1181; 4d M. Brenner, D. Seebach, Helv. Chim. Acta 2001, 84, 2155; 4e D. Seebach, M. Brenner, M. Rueping, B. Jaun, Chem.–Eur. J. 2002, 8, 573. 5 H. Appella, L. A. Christianson, I. L. Karle, D. R. Powell, S. H. Gellman, J. Am. Chem. Soc. 1996, 118, 13071; D. H. Appella, L. A. Christianson, D. A. Klein, D. R. Powell, X. Huang, Barchi Jr., S. H. Gellman, Nature (London) 1997, 387, 381; D. H. Appella, Barchi Jr., S. R. Durell, S. H. Gellman, J. Am. Chem. Soc. 1999, 121, 2309; X. Wang, J. F. Espinosa, S. H. Gellman, J. Am. Chem. Soc. 2000, 122, 4821. 6 S. Krauthäuser, L. A. Christianson, D. R. Powell, S. H. Gellman, J. Am. Chem. Soc. 1997, 119, 11719; Y. J. Chung, R. B. R. Huck, L. A. Christianson, H. E. Stanger, S. Krauthäuser, D. R. Powell, S. H. Gellman, J. Am. Chem. Soc. 2000, 122, 3995. 7a S. Hanessian, X. Luo, R. Schaum, S. Michnick, J. Am. Chem. Soc. 1998, 120, 8569; 7b S. Hanessian, X. Luo, R. Schaum, Tetrahedron Lett. 1999, 40, 4925. 8 D. Seebach, J. L. Matthews, Chem. Commun. 1997, 21, 2015; R. P. Cheng, S. H. Gellman, W. F. DeGrado, Chem. Rev. 2001, 101, 3219. 9 C. Muller, E. Kitas, H. P. Wessel, J. Chem. Soc., Chem. Commun. 1995, 23, 2425; L. Szabo, B. L. Smith, K. D. McReynolds, A. L. Parrill, E. R. Morris, J. Gervay, J. Org. Chem. 1998, 63, 1074; M. D. Smith, D. D. Long, T. D. W. Claridge, D. G. Marquess, G. W. J. Fleet, J. Chem. Soc., Chem. Commun. 1998, 18, 2039; D. D. Long, M. D. Smith, D. G. Marquess, T. D. W. Claridge, G. W. J. Fleet, Tetrahedron Lett. 1998, 39, 9293. 10 K. Kirshenbaum, A. E. Barron, R. A. Goldsmith, P. Armand, E. K. Bradley, K. T. Truong, K. A. Dill, F. E. Cohen, R. N. Zuckermann, Proc. Natl. Acad. Sci. USA 1998, 95, 4303; C. W. Wu, T. J. Sanborn, R. N. Zuckermann, A. E. Barron, J. Am. Chem. Soc. 2001, 123, 2958; C. W. Wu, T. J. Sanborn, K. Huang, R. N. Zuckermann, A. E. Barron, J. Am. Chem. Soc. 2001, 123, 6778. 11 F. Bernardi, M. Garavelli, M. Scatizzi, C. Tomasini, V. Trigari, M. Crisma, F. Formaggio, C. Peggion, C. Toniolo, Chem.–Eur. J. 2002, 8, 2516. 12 D. Yang, J. Qu, B. Li, F.-F. Ng, X.-C. Wang, K.-K. Cheung, D.-P. Wang, Y.-D. Wu, J. Am. Chem. Soc. 1999, 121, 589. 13 H. Han, K. D. Janda, J. Am. Chem. Soc. 1996, 118, 2539. 14a R. Günther, H.-J. Hoffmann, J. Am. Chem. Soc. 2001, 123, 247; 14b G. Lelais, D. Seebach, ‘Proceedings of the 2nd International and the 17th American Peptide Symposium – San Diego (June 2001)', in ‘Peptides: The Wave of the Future', Eds. M. Lebl and R. A. Houghten, American Peptide Society, San Diego, 2001, p. 581. 15 K. Burgess, D. S. Linthicum, H. Shin, Angew. Chem., Int. Ed. 1995, 34, 907; K. Burgess, J. Ibarzo, D. S. Linthicum, D. H. Russell, H. Shin, A. Shitangkoon, R. Totani, A. J. Zhang, J. Am. Chem. Soc. 1997, 119, 1556. 16 C. Y. Cho, E. J. Moran, S. R. Cherry, J. C. Stephans, S. P. A. Fodor, C. L. Adams, A. Sundaram, J. W. Jacobs, P. G. Schultz, Science (Washington, D.C.) 1993, 261, 1303; C. Y. Cho, R. S. Youngquist, S. J. Paikoff, M. H. Beresini, A. R. Herbert, L. T. Berleau, C. W. Liu, D. E. Wemmer, T. Keough, P. G. Schultz, J. Am. Chem. Soc. 1998, 120, 7706. 17 V. Semetey, D. Rognan, C. Hemmerlin, C. Didierjean, A.-P. Schaffner, Gimenez Giner, A. Aubry, J.-P. Briand, M. Marraud, G. Guichard, Org. Lett. 2001, 3, 3843. 18 V. Semetey, D. Rognan, C. Hemmerlin, R. Graff, J.-P. Briand, M. Marraud, G. Guichard, Angew. Chem. 2002, 115, 1973; Angew. Chem., Int. Ed. 2002, 41, 1893. 19 V. Semetey, C. Didierjean, J.-P. Briand, A. Aubry, G. Guichard, Angew. Chem. 2002, 115, 1975; Angew. Chem., Int. Ed. 2002, 41, 1895. 20 J. M. Kim, Y. Bi, S. Paikoff, P. G. Schultz, Tetrahedron Lett. 1996, 37, 5305. 21 A. Boeijen, R. M. J. Liskamp, Eur. J. Org. Chem. 1999, 2127. 22 G. Guichard, V. Semetey, C. Didierjean, A. Aubry, J. P. Briand, M. Rodriguez, J. Org. Chem. 1999, 64, 8702. 23 G. Guichard, V. Semetey, M. Rodriguez, J. P. Briand, Tetrahedron Lett. 2000, 41, 1553. 24 G. Guichard, S. Abele, D. Seebach, Helv. Chim. Acta 1998, 81, 187. 25 H. Rink, Tetrahedron Lett. 1987, 37, 3787. 26 H. Kessler, Angew. Chem., Int. Ed. 1982, 21, 512. 27 K. D. Kopple, M. Ohnishi, A. Go, J. Am. Chem. Soc. 1969, 91, 4264; N. H. Andersen, J. W. Neidigh, S. M. Harris, G. M. Lee, Z. Liu, H. Tong, J. Am. Chem. Soc.1997, 119, 8547. 28 K. D. McReynolds, J. Gervay-Hague, Tetrahedron: Asymmetry 2000, 11, 337. 29 J. Neimark, J.-P. Briand, Peptide Res. 1993, 6, 219. 30 E. Kaiser, R. L. Colescott, C. D. Bossinger, P. I. Cook, Anal. Biochem. 1970, 34, 595. 31 W. S. Hancok, J. E. Battersby, Anal. Biochem. 1976, 71, 260. 32 R. R. Ernst, Chem. Phys. Lett. 1977, 52 , 407; B. Ancian, I. Bourgeois, J.-F. Dauphin, A. A. Shaw, J. Magn. Reson. A 1997, 125, 348. A. Wokaun 33 A. Bax, D. G. Davis, J. Magn. Reson. 1985, 65, 355. 34 A. Bax, D. G. Davis, J. Magn. Reson. 1985, 63, 207; H. Desvaux, P. Berthault, N. Birlirakis, M. Goldman, M. Piotto, J. Magn. Reson. A 1995, 113, 47. 35 T. D. Goddard, D. G. Kneller, ‘Sparky 3', University of California, San Francisco. 36 D. A. Case, D. A. Pearlman, J. W. Caldwell, D. E. Cheatham III, W. S. Ross, C. L. Simmerling, T. A. Darden, K. M. Merz, R. V. Stanton, A. L. Cheng, J. J. Vincent, M. Crowley, V. Tsui, R. J. Radmer, Y. Duan, J. Pitera, I. Massova, G. L. Seibel, U. C. Singh, P. K. Weiner, P. A. Kollman, ‘AMBER6', University of California, San Francisco, 1999. 37 D. Rognan, S. Mukhija, G. Folkers, O. Zerbe, J. Comput.-Aided Mol. Design 2001 15, 103. 38 SYBYL6.8, Tripos Inc., St. Louis, Missouri, MO 63144, USA. 39 GAUSSIAN 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G.E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998. 40 C. I. Bayly, P. Cieplak, W. D. Cornell, P. A. Kollman, J. Phys. Chem. 1993, 97, 10269. 41 W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, Merz Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, P. A. Kollman, J. Am. Chem. Soc. 1995, 117, 5179. Citing Literature Volume85, Issue11November 2002Pages 3692-3711 ReferencesRelatedInformation
Referência(s)