Artigo Revisado por pares

Adaptation to Aquatic, Arboreal, Fossorial and Cursorial Habits in Mammals. I. Aquatic Adaptations

1903; University of Chicago Press; Volume: 37; Issue: 442 Linguagem: Inglês

10.1086/278351

ISSN

1537-5323

Autores

Raymond C. Osburn,

Tópico(s)

Mollusks and Parasites Studies

Resumo

Previous articleNext article FreeAdaptation to Aquatic, Arboreal, Fossorial and Cursorial Habits in Mammals. I. Aquatic AdaptationsRaymond C. OsburnRaymond C. Osburn Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmailPrint SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 37, Number 442Oct., 1903 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/278351 Views: 1011Total views on this site Citations: 18Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:William Corrêa Tavares, Ludmilla Carvalho Coutinho, João Alves Oliveira Locomotor habits and phenotypic evolution of the appendicular skeleton in the oryzomyalian radiation in the Neotropics (Sigmodontinae, Cricetidae, Rodentia), Journal of Zoological Systematics and Evolutionary Research 59, no.88 (Oct 2021): 2457–2480.https://doi.org/10.1111/jzs.12551Patrick Arnold Evolution of the Mammalian Neck from Developmental, Morpho-Functional, and Paleontological Perspectives, Journal of Mammalian Evolution 28, no.22 (Jun 2020): 173–183.https://doi.org/10.1007/s10914-020-09506-9Eloy Gálvez‐López Quantifying morphological adaptations using direct measurements: The carnivoran appendicular skeleton as a case study, The Anatomical Record 304, no.33 (Jun 2020): 480–506.https://doi.org/10.1002/ar.24453Brandon M Kilbourne Differing limb functions and their potential influence upon the diversification of the mustelid hindlimb skeleton, Biological Journal of the Linnean Society 132, no.33 (Jan 2021): 685–703.https://doi.org/10.1093/biolinnean/blaa207Sarah T. Mincer, Gabrielle A. Russo Substrate use drives the macroevolution of mammalian tail length diversity, Proceedings of the Royal Society B: Biological Sciences 287, no.19201920 (Feb 2020): 20192885.https://doi.org/10.1098/rspb.2019.2885P Parsi-Pour, B M Kilbourne Functional Morphology and Morphological Diversification of Hind Limb Cross-Sectional Traits in Mustelid Mammals, Integrative Organismal Biology 2, no.11 (Jan 2020).https://doi.org/10.1093/iob/obz032Brandon M. Kilbourne, John R. Hutchinson Morphological diversification of biomechanical traits: mustelid locomotor specializations and the macroevolution of long bone cross-sectional morphology, BMC Evolutionary Biology 19, no.11 (Jan 2019).https://doi.org/10.1186/s12862-019-1349-8Jan Wölfer, John A. Nyakatura Weighing homoplasy against alternative scenarios with the help of macroevolutionary modeling: A case study on limb bones of fossorial sciuromorph rodents, Ecology and Evolution 9, no.1919 (Sep 2019): 11025–11039.https://doi.org/10.1002/ece3.5592Jan Wölfer, Eli Amson, Patrick Arnold, Léo Botton‐Divet, Anne‐Claire Fabre, Anneke H. Heteren, John A. Nyakatura Femoral morphology of sciuromorph rodents in light of scaling and locomotor ecology, Journal of Anatomy 234, no.66 (Apr 2019): 731–747.https://doi.org/10.1111/joa.12980Jan Wölfer, Patrick Arnold, John A Nyakatura Effects of scaling and locomotor ecology suggest a complex evolution of scapular morphology in sciuromorph rodents, Biological Journal of the Linnean Society 127, no.22 (Apr 2019): 175–196.https://doi.org/10.1093/biolinnean/blz042William Corrêa Tavares, Pedro Abi-Rezik, Hector N. Seuánez Historical and ecological influence in the evolutionary diversification of external morphology of neotropical spiny rats (Echimyidae, Rodentia), Journal of Zoological Systematics and Evolutionary Research 56, no.33 (Mar 2018): 453–465.https://doi.org/10.1111/jzs.12215Brandon M. Kilbourne Selective regimes and functional anatomy in the mustelid forelimb: Diversification toward specializations for climbing, digging, and swimming, Ecology and Evolution 7, no.2121 (Sep 2017): 8852–8863.https://doi.org/10.1002/ece3.3407Eli Amson, Christine Argot, H. Gregory McDonald, Christian de Muizon Osteology and Functional Morphology of the Forelimb of the Marine Sloth Thalassocnus (Mammalia, Tardigrada), Journal of Mammalian Evolution 22, no.22 (Jul 2014): 169–242.https://doi.org/10.1007/s10914-014-9268-3MARIA ZAMMIT, BENJAMIN P. KEAR, RACHEL M. NORRIS Locomotory capabilities in the Early Cretaceous ichthyosaur Platypterygius australis based on osteological comparisons with extant marine mammals, Geological Magazine 151, no.11 (Nov 2013): 87–99.https://doi.org/10.1017/S0016756813000782Tobias Nasterlack, Aurore Canoville, Anusuya Chinsamy New insights into the biology of the Permian genus Cistecephalus (Therapsida, Dicynodontia), Journal of Vertebrate Paleontology 32, no.66 (Nov 2012): 1396–1410.https://doi.org/10.1080/02724634.2012.697410Philip D. Gingerich Land-to-sea transition in early whales: evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals, Paleobiology 29, no.33 (Sep 2003): 429–454.https://doi.org/10.1666/0094-8373(2003)029<0429:LTIEWE>2.0.CO;2Olaf R.P. Bininda-Emonds, John L. Gittleman, Colleen K. Kelly Flippers versus feet: comparative trends in aquatic and non-aquatic carnivores, Journal of Animal Ecology 70, no.33 (May 2001): 386–400.https://doi.org/10.1046/j.1365-2656.2001.00499.xJustine A. Salton, Eric J. Sargis Evolutionary Morphology of the Tenrecoidea (Mammalia) Forelimb Skeleton, (): 51–71.https://doi.org/10.1007/978-1-4020-6997-0_4

Referência(s)
Altmetric
PlumX