Revisão Revisado por pares

Cellular and Molecular Events Underlying Epileptic Brain Damagea

1986; Wiley; Volume: 462; Issue: 1 Linguagem: Inglês

10.1111/j.1749-6632.1986.tb51255.x

ISSN

1749-6632

Autores

Bo K. Siesjö, Martin Ingvar, Tadeusz Wieloch,

Tópico(s)

Nicotinic Acetylcholine Receptors Study

Resumo

Annals of the New York Academy of SciencesVolume 462, Issue 1 p. 207-223 Cellular and Molecular Events Underlying Epileptic Brain Damagea BO K. SIESJÖ, BO K. SIESJÖ Laboratory for Experimental Brain Research University Hospital University of Lund S-22185 Lund, SwedenSearch for more papers by this authorMARTIN INGVAR, MARTIN INGVAR Laboratory for Experimental Brain Research University Hospital University of Lund S-22185 Lund, SwedenSearch for more papers by this authorTADEUSZ WIELOCH, TADEUSZ WIELOCH Laboratory for Experimental Brain Research University Hospital University of Lund S-22185 Lund, SwedenSearch for more papers by this author BO K. SIESJÖ, BO K. SIESJÖ Laboratory for Experimental Brain Research University Hospital University of Lund S-22185 Lund, SwedenSearch for more papers by this authorMARTIN INGVAR, MARTIN INGVAR Laboratory for Experimental Brain Research University Hospital University of Lund S-22185 Lund, SwedenSearch for more papers by this authorTADEUSZ WIELOCH, TADEUSZ WIELOCH Laboratory for Experimental Brain Research University Hospital University of Lund S-22185 Lund, SwedenSearch for more papers by this author First published: March 1986 https://doi.org/10.1111/j.1749-6632.1986.tb51255.xCitations: 33 a This study was supported by grants from the Swedish Medical Research Council (Project No. 14X-263), and from the U.S. Public Health Service (National Institutes of Health Grant No. 2 R01 NS 07838). AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References 1 Corsellis, J. A. N. & B. S. Meldrum. 1976. Epilepsy. In Greenfield's Neuropatholgy. W. Blackwood & J. A. N. Corsellis, Eds.: 771– 795. Edward Arnold. London , England . 2 Siesjö, B. K. & T. Wieloch. Epileptic brain damage: pathophysiology and neurochemical pathology. In Basic Mechanisms of the Epilepsies. A. Delgado-Escueta, A. Ward & D. Woodbury, Eds. Raven Press. New York , N.Y. (In press.) 3 Ingvar, M. & B. K. Siesjö. 1983. Local blood flow and glucose consumption in the rat brain during sustained bicuculline-induced seizures. Acta. Neurol. Scand. 68: 129– 144. 4 Sacktor, B., J. E. Wilson & C. G. Tiekert. 1966. Regulation of glycolysis in brain, in situ, during convulsions. J. Biol. Chem. 241: 5071– 5075. 5 Duffy, T. E., D. C. Howse & F. Plum. 1975. Cerebral energy metabolism during experimental status epilepticus. J. Neurochem. 24: 925– 934. 6 Chapman, A. G., B. S. Meldrum & B. K. Siesjö. 1977. Cerebral metabolic changes during prolonged epileptic seizures in rats. J. Neurochem. 28: 1025– 1035. 7 Folbergrová, J., M. Ingvar & B. K. Siesjö. 1981. Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline induced seizures. J. Neurochem. 37: 1228– 1238. 8 Schrader, J., M. Wahl, W. Kuschinsky & G. W. Kreutzberg. 1980. Increase of adenosine content in cerebral cortex of the cat during bicuculline-induced seizure. Pflügers Arch. 387: 245– 251. 9 Winn, H. R., J. E. Welsh, R. Rubio & R. M. Berne. 1980. Changes in brain adenosine during bicuculline-induced seizures in rats. Circ. Res. 47: 568– 577. 10 Ferrendelli, J. A., A. C. Blank & R. A. Gross. 1980. Relationships between seizure activity and cyclic nucleotide levels in brain. Brain Res. 200: 93– 103. 11 Calderini, G., A. Carlsson & C. -H. Nordström. 1978. Monoamine metabolism during bicucilline-induced epileptic seizures in the rat. Brain Res. 157: 295– 302. 12 Ingvar, M., O. Lindvall, J. Folbergrová & B. K. Siesjö. 1983. Influence of lesions of the noradrenergic locus coeruleus system on the cerebral metabolic response to bicucil-line-induced seizures. Brain Res. 264: 225– 231. 13 Bloom, F. E. 1975. The role of cyclic nucleotides in central synaptic function. Rev. Physiol. Biochem. Pharmacol. 74: 1– 103. 14 Blennow, G., J. B. Brierley, B. S. Meldrum & B. K. Siesjö. 1978. Epileptic brain damage. The role of systemic factors that modify cerebral energy metabolism. Brain 101: 687– 700. 15 Blennow, G., J. Folbergrová, B. Nilsson & B. K. Siesjö. 1979. Effects of bicuculline-induced seizures on cerebral metabolism and circulation of rats rendered hypoglycemic by starvation. Ann. Neurol. 5: 139– 151. 16 Söderfeldt, B., H. Kalimo, Y. Olsson & B. K. Slesjö. 1983. Bicucullipe-induced epileptic brain injury. Acta Neuropathol. Berlin 62: 87– 95. 17 Caspers, H. & E. J. Speckmann. 1972. Cerebral pCO2, pCO2 and pH: changes during convulsive activity and their significance for spontaneous arrest of seizures. Epilepsia 13: 699– 725. 18 Kreisman, N. R., M. Rosenthal, T. J. Siac & J. C. Lamanna. 1983. Oxidative metabolic responses during recurrent seizures are independent of copvulsant, anesthetic, or species. Neurology 33: 861– 867. 19 Merril, D. K. & R. W. Guynn. 1982. The calculation of the mitochondrial free [NAD+] / [NADH] [H+] ratio in brain: effect of electroconvulsive seizure. Brain Res. 239: 71– 80. 20 Heinemann, U., H. D. Lux & M. J. Gutnick. 1977. Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp. Brain Res. 27: 237– 243. 21 Astrup, J., G. Blennow & B. Nilsson. 1979. Effects of reduced cerebral blood flow upon EEG pattern, cerebral extracellular potassium, and energy metabolism in the rat cortex during bicuculline-induced seizures. Brain Res. 177: 115– 126. 22 Howse, D. C., J. J. Caronna, T. E. Duffy & F. Plum. 1974. Cerebral energy metabolism, pH and blood flow during seizures in the cat. Am. J. Physiol. 227: 1444– 1451. 23 Siesjö, B. K., R. Von Hanwehr, G. Nergelius, G. Nevander & M. Ingvar. 1985. Extra-and intracellular pH in the brain during seizures and in the recovery period following arrest of seizure activity. J. Cereb. Blood Flow Metab. 5: 47– 57. 24 Roos, A. & W. F. Boron. 1981. Intracellular pH. Physiol. Rev. 61: 296– 434. 25 Siesjö, B. K. Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical pathology. Prog. Brain Res. 63. (In press.) 26 Nicholson, C., G. Ten Bruggencate, R. Steinberg & H. Stöckle. 1977. Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc. Nat. Acad. Sci. USA 74: 1287– 1290. 27 Heinemann, U. & R. Pumain. 1980. Extracellular calcium activity changes in cat sensorimotor cortex induced by iontophoretic application of aminoacids. Exp. Brain Res. 40: 247– 250. 28 Hansen, A. J. & T. Zeuthen. 1981. Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. Acta Physiol. Scand. 113: 437– 445. 29 Harris, R. J., L. Symon, N. M. Branston & M. Bayhan. 1981. Changes in extracellular calcium activity in cerebral ischemia. J. Cereb. Blood Flow Metab. 1: 203– 210. 30 Harris, R. J., T. Wieloch, L. Symon & B. K. Siesjö. 1984. Cerebral extracellular calcium activity in severe hypoglycemia: relation to extracellular potassium and energy state. J. Cereb. Blood Flow Metab. 4: 187– 193. 31 Bazán, N. G., Jr. 1971. Changes in free fatty acids of brain by drug-induced convulsions, electroshock and anaesthesia. J. Neurochem. 18: 1379– 1385. 32 Bazán, N. G., Jr. 1976. Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. In Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems. G. Porcellati, L. Amaducci, C. Galli, Eds.: 317– 356. Plenum Press. New York , N.Y. . 33 Marion, J. & L. S. Wolfe. 1978. Increase in vivo of unesterifíed fatty acids, prostaglandin F2α but not thromboxane B2 in rat brain during drug induced convulsions. Prostaglandins 16(1): 99– 109. 34 Chapman, A., M. Ingvar & B. K. Siesjö. 1980. Free fatty acids in the brain in bicuculline-induced status epilepticus. Acta Physiol. Scand. 110: 335– 336. 35 Bazán, N. G., S. A. Morelli de Liberti & E. B. Rodriguez de Turco. 1982. Arachidonic acid and arachidonyldiglycerols increase in rat cerebrum during bicuculline-induced status epilepticus. Neurochem. Res. 7(7): 839– 843. 36 Siesjö, B. K., M. Ingvar & E. Westerberg. 1982. The influence of bicuculline-induced seizures on free fatty acid concentrations in cerebral cortex, hippocampus, and cerebellum. J. Neurochem. 39: 796– 902. 37 Wolfe, L. S. 1982. Short review. Eicosanoids: prostaglandins, thromboxanes, leukotrienes, and other derivates of carbon-20 unsaturated fatty acids. J. Neurochem. 38: 1– 14. 38 Wasterlain, C. G. 1974. Inhibition of cerebral protein synthesis by epileptic seizures without motor manifestations. Neurology 175: 175– 180. 39 Wasterlain, C. G. 1977. Effects of epileptic seizures on brain ribosomes: mechanism and relationship to cerebral energy metabolism. J. Neurochem. 29: 707– 716. 40 Fando, J. L., M. Conn & C. G. Wasterlain. 1979. Brain protein synthesis during neonatal seizures: an experimental study. Exp. Neurol. 63: 220– 228. 41 Kiesslino, M. & P. Kleihues. 1981. Regional protein synthesis in the rat brain during bicuculline-induced epileptic seizures. Acta Neuropathol. Berlin 55: 157– 162. 42 Kiessling, M., Y. Xie & P. Kleihues. 1984. Regional impairment of protein synthesis in the rat brain during biculline-?nduced seizures. Brain. Res. 296: 1– 13. 43 Siesjö, B. K. & A. Abdul-Rahman. 1979. A metabolic basis for the selective vulnerability of neurons in status epilepticus. Acta Physiol. Scand. 106: 377– 378. 44 Dwyer, B. & C. G. Wasterlain. 1980. Regulation of the first step of the initiation of brain protein synthesis by guanosine diphosphate. J. Neurochem. 34(6): 1639– 1647. 45 Lothman, E. W. & R. C. Collins. 1981. Kainic acid induced limbic seizures: metabolic, behavioural, electroencephalographic, and neuropathological correlates. Brain Res. 218: 299– 318. 46 Nevander, G., M. Ingvar, R. Auer & B. K. Siesjö. 1984. Irreversible brain cell damage after short periods of status epilepticus. Acta Physiol. Scand. 120: 155– 157. 47 Nevander, G., M. Ingvar, R. Auer & B. K. Siesjö Status. epilepticus in well oxygenated rats causes neuronal necrosis. Ann. Neurol. 18. (In press.) 48 Ingvar, M., J. Folbergrová, G. Nevander, R. N. Auer & B. K. Siesjö. 1985. Epileptic neuronal damage: selective neuronal necrosis versus hypermetabolic infarction. J. Cereb. Blood Flow Metab. 5(Suppl. 1): S353– S354. 49 Minard, F. N. & R. V. Davis. 1962. The effects of electroshock on the acid-soluble phosphates of rat brain. J. Biol. Chem. 237: 1283– 1289. 50 Sacktor, B., J. E. Wilson & C. G. Tiekert. 1967. Regulation of glycolysis in brain, in situ, during convulsions. J. Biol. Chem. 241(21): 5071– 5075. 51 King, L. J., O. H. Lowry, J. V. Passonneau & V. Venson. 1967. Effects of convulsants on energy reserves in the cerebral cortex. J. Neurochem. 14: 599– 611. 52 Ferrendelli, J. A. & D. B. Mcdougal, Jr. 1971. The effect of electroshock on regional CNS energy reserves in mice. J. Neurochem. 18: 1197– 1205. 53 Folbergrová, J. 1977. Changes in cyclic AMP and phosphorylase a in mouse cerebral cortex during seizures induced by 3-mercaptopropionic acid. Brain Res. 135: 337– 341. 54 Schultz, V. & J. M. Lowenstein. 1978. The purine nucleotide cycle. Studies of ammonia production and interconversions of adenine and hypoxanthine nucleotides and nucleosides by rat brain in situ. J. Biol. Chem. 253: 1938– 1943. 55 Dunn, A., A. Giuditta & N. Pagliuca. 1971. The effect of electroconvulsive shock on protein synthesis in mouse brain. J. Neurochem. 18: 2093– 2099. 56 Metafora, S., M. Persico, A. Felsani, R. Ferraiuolo & A. Giuditta. 1977. On the mechanism of electroshock-induced inhibition of protein synthesis in rabbit cerebral cortex. J. Neurochem. 28: 1335– 1346. 57 Collins, R. C., E. W. Lothman & J. W. Olney. 1983. Status epilepticus in the limbic system: biochemical and pathological changes. Adv. Neurol. 34: 277– 288. 58 Collins, R. C. & J. W. Olney. 1983. Focal cortical seizures cause distant thalamic lesions. Science 218: 177– 179. 59 McIntyre, D. C., D. Nathanson & N. Edson. 1982. A new model of partial status epilepticus based on kindling. Brain Res. 250: 53– 63. 60 Ingvar, M. 1986. Cerebral blood flow and metabolic rate during seizures: relationship to epileptic brain damage. Proc. N.Y. Acad. Sci. (This volume.). 61 Siesjö, B. K. 1981. Cell damage in the brain: a speculative synthesis. J. Cereb. Blood Flow Metab. 1: 155– 185. 62 Meldrum, B. S. 1983. Metabolic factors during prolonged seizures and their relation to nerve cell death. Adv. Neurol. 34: 261– 276. 63 Siesjö, B. K. & T. Wieloch. 1985. Brain injury: neurochemical aspects. In Central Nervous System Trauma—Status Report. D. P. Becker & J. T. Povlishock, Eds.: 513– 532. William Byrd Press Inc. Richmond , Va . 64 Nadler, J. V. 1981. Minireview. Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci. 29: 2031– 2042. 65 Coyle, J. T. 1983. Short review. Neurotoxic action of kainic acid. J. Neurochem. 41(1): 1– 11. 66 Rothman, S. M. 1983. Synaptic activity mediates death of hypoxic neurons. Science 220: 536– 537. 67 Rothman, S. 1984. Synaptic release of excitatory amipo acid neurotransmitter mediales anoxic neuronal death. J. Neurosci. 4(7): 1884– 1891. 68 Simon, R. P., J. H. Swan, T. Griffiths & B. S. Meldrum. 1984. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226: 850– 852. 69 Weiloch, T., O. Lindvall, P. Blomqvist & F. H. Gage. 1985. Evidence for amelioration of ischemic neuronal damage in the hippocampal formation by lesions of the perforant path. Neurol. Res. 7: 24– 26. 70 Weiloch, T. Neurochemical. correlates to regional selective neuronal vulnerability. Prog. Brain Res. 63. (In press.) 71 Smith, M-L., H. Thor & S. Orrenius. 1980. Toxic injury to isolated hepatocytes is not dependent on extracellular calcium. Science 213: 1257– 1259. 72 Berridge, M. J. 1979. Modulation of nervous activity by cyclic nucleotides and calcium. In The Neurosciences: Fourth Study Program. F. O. Schmitt & F. G. Worden, Eds.: 873– 889. MIT Press. Cambridge , Mass . 73 Berridge, M. J. 1984. Review article. Inositol triphosphate and diacylglycerol as sound messengers. Biochem. J. 220: 345– 360. 74 Arafoli, E. & M. Crompton. 1978. The regulation of intracellular calcium. In Membrane Properties: Mechanical Aspects, Receptors, Energetics, and Calcium-Depen- dence of Transport. F. Bronner & A. Kleinzeller, Eds. 10: 151– 216. Academic Press. New York , N.Y. . 75 Borle, A. B. 1981. Control, modulation, and regulation of cell calcium. Rev. Physiol. Biochem. Pharmacol. 90: 13– 164. 76 Rasmussen, H. & D. M. Waisman. 1983. Modulation of cell function in the calcium messenger system. Rev. Physiol. Biochem. Pharmacol. 95: 111– 145. 77 Wrogemann, K. & S. D. J. Pena. 1976. Hypothesis. Mitochondrial calcium overload: a general mechanism for cell-necrosis in muscle disease. Lancet (March 17): 672– 674. 78 Hearse, D. J., S. M. Humphrey & G. R. Bullock. 1978. The oxygen paradox and the calcium paradox: two facets of the same problem. J. Mol. Cell. Cardiol. 10: 641– 668. 79 Schanne, F. A. X., A. B. Kane, E. E. Young & J. L. Faber. 1979. Calcium dependence of toxic cell death: a final common pathway. Science 206: 700– 702. 80 Griffiths, T., M. C. Evans & B. S. Meldrum. 1983. Intracellular calcium accumulation in rat hippocampus during seizures induced by bicuculline or L-allylglycine. Neuroscience 10(2): 385– 395. 81 Van Reempts, J., M. Haseldonckx, M. Van de yen & M. Borgers. 1984. Morphology and ultrastructural calcium distribution in the rat hippocampus after severe transient ischemia. In Cerebral Ischemia. A. Bes, P. Braquet, R. Paoletti & B. K. Siesjö, Eds.: 113– 118. Elsevier Science Publishers B. V. Amsterdam , Holland . 82 Beatrice, M. C., J. W. Palmer & R. P. Douglas. 1980. The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria. J. Biol. Chem. 255(18): 8663– 8671. 83 Ehrlich, Y. H. 1983. Protein phosphorylation, neuronal receptors, and seizures in the central nervous system. Adv. Neurol. 34: 345– 352. 84 Delorenzo, R. J. 1983. Calcium-calmodulin protein phosphorylation in neuronal trans-mission: a molecular approach to neuronal excitability and anticonvulsant drug action. Adv. Neurol. 34: 325– 337. 85 Schlaepfer, W. W., U. J. P. Zimmerman & S. Micro. 1981. Neurofilament proteolysis in rat peripheral nerve. Homologies with calcium-activated proteolysis of other tissues. Cell. Calcium 2: 235– 250. 86 Baudry, M. & G. Lynch. 1980. Regulation of hippocampal glutamate receptors: evidence for the involvement of a calcium-activated protease. Proc. Nat. Acad. Sci. USA 77(4): 2298– 2302. 87 Lynch, G. & M. Baudry. 1984. The biochemistry of memory: a new and specific hypothesis. Science 224: 1057– 1063. 88 Kakiuchi, S. & K. Sobue. 1981. Ca2+- and calmodulin-dependent flip-flop mechanism in microtubule assembly-disassembly. FEBS Lett. 132(1): 141– 143. 89 Browning, M., M. Baudry, W. F. Bennet & G. Lynch. 1981. Phosphorylation-mediated changes in pyruvate dehydrogenase activity influence pyruvate-supported calcium accumulation by brain mitochondria. J. Neurochem. 36: 1932– 1940. 90 Turner, R. W., K. G. Baimbridge & J. J. Miller. 1982. Calcium-induced long-term potentiation in the hippocampus. Neuroscience 7(6): 1411– 1416. 91 Bliss, T. V. P. & A. C. Dolphin. 1982. What is the mechanism of long-term potentiation in the hippocampus Trends Neurosci. (September): 289– 290. 92 Suzruki, R., T. Yamaguchi, C.-L. Li & I. Klatzo. 1983. The effects of 5-minute ischemia in mongolian gerbils. II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus. Acta Neuropathol. Berlin 60: 217– 222. 93 Myers, R. E. 1979. Lactic acid accumulation as a cause of brain edema and cerebral necrosis resulting from oxygen deprivation. In Advances in Perinatal Neurology. R. Korobkin & G. Guilleminaulh, Eds.: 85– 114. Spectrum Publishers. New York , N.Y . 94 Siesjö, B. K. 1984. Review article. Cerebral circulation and metabolism. J. Neurosurg. 60: 883– 908. 95 Plum, F. 1983. What causes infarction in ischemic brain? The Robert Wartenberg Lecture. Neurology N.Y. 33: 222– 233. 96 Siesjö, B. K. & T. Wieloch. 1985. Molecular mechanisms of ischemic brain damage: calcium-related events. In Cerebrovascular Diseases. F. Plum & W. Pulsinelli, Eds.: 187– 197. Raven Press. New York , N.Y . Citing Literature Volume462, Issue1Electroconwlsive Therapy: Clinical and Basic Research IssuesMarch 1986Pages 207-223 ReferencesRelatedInformation

Referência(s)