IL-1β and TNF-α upregulate angiotensin II type 1 (AT1) receptors on cardiac fibroblasts and are associated with increased AT1 density in the post-MI heart
2005; Elsevier BV; Volume: 38; Issue: 3 Linguagem: Inglês
10.1016/j.yjmcc.2004.12.015
ISSN1095-8584
AutoresDevorah Gurantz, Randy T. Cowling, Nissi Varki, Eduardo Frikovsky, Cristina Moore, Barry Greenberg,
Tópico(s)Heart Failure Treatment and Management
ResumoAngiotensin (Ang) II plays an important role in post-myocardial infarction (MI) cardiac remodeling. The Ang II type 1 (AT(1)) receptor which mediates most Ang II effects is upregulated on non-myocytes in the post-MI heart. We have shown that pro-inflammatory cytokines increase AT(1) receptor density on cardiac fibroblasts through a mechanism involving NF-kappaB activation. This study examines the in vitro kinetics of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) induced AT(1) receptor upregulation in neonatal rat cardiac fibroblasts and assesses temporal and spatial associations between the appearance of these agents and increased AT(1) receptor density post-MI. The results show that IL-1beta more rapidly induces AT(1) receptor upregulation than does TNF-alpha, an effect that can be mimicked by a NF-kappaB-dependent luciferase reporter gene. Moreover, the effects of these pro-inflammatory cytokines are additive. Using immunohistochemistry in the post-MI rat heart we found strong temporal and spatial correlations between TNF-alpha, IL-1beta and AT(1) receptor proteins in the peri-infarction (PI) zone in fibroblasts and macrophages. Labeling intensity for the cytokines and the AT(1) receptor increased from 1 to 7 days post-MI in the PI zone in conjunction with replacement scar formation. This labeling persisted in non-myocytes bordering the scar for up to 83 days post-MI. These findings suggest that IL-1beta and TNF-alpha act coordinately to increase AT(1) receptor density on non-myocytes in the post-MI heart and that this effect may contribute to extracellular matrix remodeling and fibrosis.
Referência(s)