On the Torsion Units of Some Integral Group Rings
2006; World Scientific; Volume: 13; Issue: 02 Linguagem: Inglês
10.1142/s1005386706000290
ISSN1005-3867
Autores Tópico(s)Coding theory and cryptography
ResumoAlgebra ColloquiumVol. 13, No. 02, pp. 329-348 (2006) No AccessOn the Torsion Units of Some Integral Group RingsMartin HertweckMartin HertweckUniversität Stuttgart, Fachbereich Mathematik, Institut für Geometrie und Topologie, Pfaffenwaldring 57, D-70550 Stuttgart, Germanyhttps://doi.org/10.1142/S1005386706000290Cited by:36 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractIt is shown that any torsion unit of the integral group ring ℤG of a finite group G is rationally conjugate to a trivial unit if G = P ⋊ A with P a normal Sylow p-subgroup of G and A an abelian p′-group (thus confirming a conjecture of Zassenhaus for this particular class of groups). The proof is an application of a fundamental result of Weiss. It is also shown that the Zassenhaus conjecture holds for PSL(2,7), the finite simple group of order 168.The author acknowledges support by the DeutscheForschungsgemeinschaft.Keywords:integral group ringtorsion unitZassenhaus conjectureAMSC: primary 16S34, primary 16U60, secondary 20D15 References J. L. Alperin , Local Representation Theory, Modular Representations as an Introduction to the Local Representation Theory of Finite Groups , Cambridge Studies in Advanced Mathematics, 11 ( Cambridge University Press , 1986 ) . Crossref, Google ScholarH. Bass, Invent. Math. 35, 155 (1976), DOI: 10.1007/BF01390137. Crossref, ISI, Google ScholarD. J. Benson and K. R. Goodearl, Pacific J. Math. 196(1), 45 (2000). Crossref, ISI, Google ScholarV. Bovdi, C. Höfert and W. Kimmerle, Publ. Math. Debrecen 65(3-4), 291 (2004). ISI, Google ScholarR. Brauer, Ann. of Math. (Ser. 2) 42, 936 (1941). Crossref, Google ScholarL. G. Chouinard, J. Pure Appl. Algebra 7(3), 287 (1976), DOI: 10.1016/0022-4049(76)90055-4. Crossref, ISI, Google ScholarJ. A. Cohn and D. Livingstone, Canad. J. Math. 17, 583 (1965). Crossref, ISI, Google Scholar C. W. Curtis and I. Reiner , Methods of Representation Theory, Vol. I, With Applications to Finite Groups and Orders , Pure and Applied Mathematics ( A Wiley-Interscience Publication, John Wiley & Sons Inc. , New York , 1981 ) . Google ScholarM. A. Dokuchaev and S. O. Juriaans, Canad. J. Math. 48(6), 1170 (1996). Crossref, ISI, Google ScholarM. A. Dokuchaev, S. O. Juriaans and C. Polcino Milies, Comm. Algebra 25(7), 2311 (1997). Crossref, ISI, Google ScholarA. Giambruno, Sehgal and K. Sudarshan, Rocky Mountain J. Math. 22(4), 1303 (1992). Crossref, ISI, Google ScholarM. Hertweck, Beiträge Algebra Geom. 43(2), 513 (2002). Google Scholar M. Hertweck, Contributions to the integral representation theory of groups (Habilitationsschrift, 2004, http://elib.uni-stuttgart.de/opus/volltexte/2004/1638/) . Google ScholarM. Hertweck and W. Kimmerle, Proc. London Math. Soc. (Ser. 3) 84(1), 179 (2002). Crossref, ISI, Google Scholar C. Höfert, Die erste Vermutung von Zassenhaus für Gruppen kleiner Ordnung, Master's thesis, University of Stuttgart, 2004 . Google ScholarI. Hughes and K. R. Pearson, Canad. Math. Bull. 15, 529 (1972). Crossref, ISI, Google Scholar B. Huppert , Endliche Gruppen, I , Die Grundlehren der Mathematischen Wissenschaften, Band 134 ( Springer-Verlag , Berlin , 1967 ) . Crossref, Google Scholar B. Huppert and N. Blackburn , Finite Groups, II , Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) ( Springer-Verlag , Berlin , 1982 ) . Crossref, Google ScholarS. O. Juriaans and C. Polcino Milies, J. Group Theory 3(3), 277 (2000), DOI: 10.1515/jgth.2000.022. ISI, Google ScholarG. Karpilovsky, Bull. Austral. Math. Soc. 21(3), 329 (1980). Crossref, Google ScholarW. Kimmerle and K. W. Roggenkamp, Arch. Math. (Basel) 60(1), 1 (1993). Crossref, ISI, Google ScholarI. S. Luthar and A. K. Bhandari, J. Number Theory 17(2), 270 (1983), DOI: 10.1016/0022-314X(83)90024-0. Crossref, ISI, Google ScholarI. S. Luthar and I. B. S. Passi, Proc. Indian Acad. Sci. Math. Sci. 99(1), 1 (1989). Crossref, ISI, Google ScholarI. S. Luthar and P. Sehgal, Res. Bull. Panjab Univ. Sci. 48(1-4), 137 (1998). Google ScholarI. S. Luthar and P. Trama, J. Indian Math. Soc. (N.S.) 55(1-4), 199 (1990). Google ScholarI. S. Luthar and P. Trama, Comm. Algebra 19(8), 2353 (1991). Crossref, ISI, Google ScholarZ. Marciniaket al., J. Number Theory 25(3), 340 (1987), DOI: 10.1016/0022-314X(87)90037-0. Crossref, ISI, Google ScholarC. Polcino Milies, J. Ritter and S. K. Sehgal, Proc. Amer. Math. Soc. 97(2), 201 (1986), DOI: 10.2307/2046498. Crossref, ISI, Google ScholarC. Polcino Milies and S. K. Sehgal, J. Number Theory 19(1), 103 (1984), DOI: 10.1016/0022-314X(84)90095-7. Crossref, ISI, Google ScholarJ. Ritter and S. K. Sehgal, Math. Ann. 264(2), 257 (1983), DOI: 10.1007/BF01457529. Crossref, ISI, Google Scholar K. W. Roggenkamp , Integral Representations and Structure of Finite Group Rings , Séminaire de Mathématiques Supérieures (Seminar on Higher Mathematics), 71 ( Presses de l'Université de Montréal , Montreal, Que. , 1980 ) . Google ScholarK. W. Roggenkamp, Group Rings and Class Groups, DMV Sem. 18 (Birkhäuser, Basel, 1992) pp. 1–152. Crossref, Google ScholarK. W. Roggenkamp, Trends in Ring Theory (Miskolc, 1996), CMS Conf. Proc., 22 (Amer. Math. Soc., Providence, RI, 1998) pp. 173–186. Google ScholarK. Roggenkamp and L. Scott, Ann. of Math. (Ser. 2) 126(3), 593 (1987). Crossref, Google ScholarR. Sandling, Integral Representations and Applications (Oberwolfach, 1980), Lecture Notes in Math., 882 (Springer, Berlin, 1981) pp. 93–116. Crossref, Google Scholar S. K. Sehgal , Topics in Group Rings , Monographs and Textbooks in Pure and Applied Math. 50 ( Marcel Dekker Inc. , New York , 1978 ) . Google ScholarS. K. Sehgal, Methods in Ring Theory (Antwerp, 1983), NATO Adv. Sci. Inst. Ser. C (Math. Phys. Sci.), 129 (Reidel, Dordrecht, 1984) pp. 497–504. Crossref, Google Scholar S. K. Sehgal , Units in Integral Group Rings , Pitman Monographs and Surveys in Pure and Applied Mathematics, 69 ( Longman Scientific & Technical , Harlow , 1993 ) . Google ScholarS. K. Sehgal, Encyclopaedia of Mathematics (Kluwer Acad. Publ., Dordrecht, 2002) pp. 453–454. Google ScholarS. K. Sehgal, Handbook of Algebra 3 (North-Holland, Amsterdam, 2003) pp. 455–541. Crossref, Google ScholarS. K. Sehgal and A. Weiss, J. Algebra 103(2), 490 (1986), DOI: 10.1016/0021-8693(86)90149-3. Crossref, ISI, Google Scholar J. Thévenaz , G-Algebras and Modular Representation Theory , Mathematical Monographs ( The Clarendon Press Oxford University Press , New York , 1995 ) . Google ScholarA. Valenti, Proc. Amer. Math. Soc. 120(1), 1 (1994), DOI: 10.2307/2160159. Crossref, ISI, Google Scholar R. Wagner, Zassenhausvermutung über die Gruppen PSL (2; p), Master's thesis, University of Stuttgart, 1995 . Google ScholarA. Weiss, Ann. of Math. (Ser. 2) 127(2), 317 (1988). Crossref, Google ScholarA. Weiss, J. Reine Angew. Math. 415, 175 (1991). ISI, Google Scholar R. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray, R. Abbott, Atlas of Finite Group Representations (HTML-version http://web.mat.bham.ac.uk/atlas/) . Google ScholarH. Zassenhaus, Studies in Mathematics (Instituto de Alta Cultura, Lisbon, 1974) pp. 119–126. Google Scholar FiguresReferencesRelatedDetailsCited By 36Units of group rings and a conjecture of H. J. ZassenhausC. Polcino Milies4 March 2022 | São Paulo Journal of Mathematical Sciences, Vol. 16, No. 1From examples to methods: two cases from the study of units in integral group ringsAndreas Bächle and Leo Margolis22 October 2021 | Indian Journal of Pure and Applied Mathematics, Vol. 52, No. 3On the First Zassenhaus Conjecture and Direct ProductsAndreas Bächle, Wolfgang Kimmerle and Mariano Serrano15 October 2018 | Canadian Journal of Mathematics, Vol. 72, No. 3On the Zassenhaus Conjecture for Certain Cyclic-by-Nilpotent GroupsMauricio Caicedo and Ángel del Río22 February 2020 | Mediterranean Journal of Mathematics, Vol. 17, No. 2Partial augmentations power property: A Zassenhaus Conjecture related problemLeo Margolis and Ángel del Río1 Sep 2019 | Journal of Pure and Applied Algebra, Vol. 223, No. 9Zassenhaus conjecture on torsion units holds for SL(2, 𝑝 ) and SL(2, 𝑝 2 )Ángel del Río and Mariano Serrano7 May 2019 | Journal of Group Theory, Vol. 22, No. 5Zassenhaus Conjecture on torsion units holds for PSL(2,p) with p a Fermat or Mersenne primeLeo Margolis, Ángel del Río and Mariano Serrano1 Aug 2019 | Journal of Algebra, Vol. 531On the Prime Graph Question for Integral Group Rings of 4-Primary Groups IIAndreas Bächle and Leo Margolis12 March 2018 | Algebras and Representation Theory, Vol. 22, No. 2A counterexample to the first Zassenhaus conjectureFlorian Eisele and Leo Margolis1 Dec 2018 | Advances in Mathematics, Vol. 339The Status of the Zassenhaus Conjecture for Small GroupsAndreas Bächle, Allen Herman, Alexander Konovalov, Leo Margolis and Gurmail Singh5 April 2017 | Experimental Mathematics, Vol. 27, No. 4Cliff–Weiss inequalities and the Zassenhaus ConjectureLeo Margolis and Ángel del Río1 Aug 2018 | Journal of Algebra, Vol. 507On the torsion units of the integral group ring of finite projective special linear groupsÁngel del Río and Mariano Serrano10 February 2017 | Communications in Algebra, Vol. 45, No. 12Rational Conjugacy of Torsion Units in Integral Group Rings of Non-Solvable GroupsAndreas Bächle and Leo Margolis16 March 2017 | Proceedings of the Edinburgh Mathematical Society, Vol. 60, No. 4On the Gruenberg–Kegel graph of integral group rings of finite groupsW. Kimmerle and A. Konovalov2 October 2017 | International Journal of Algebra and Computation, Vol. 27, No. 06On the prime graph question for integral group rings of 4-primary groups IAndreas Bächle and Leo Margolis2 October 2017 | International Journal of Algebra and Computation, Vol. 27, No. 06On the prime graph question for almost simple groups with an alternating socleAndreas Bächle and Mauricio Caicedo20 April 2017 | International Journal of Algebra and Computation, Vol. 27, No. 03Torsion units for some almost simple groupsJoe Gildea25 June 2016 | Czechoslovak Mathematical Journal, Vol. 66, No. 2Torsion units for a Ree group, Tits group and a Steinberg triality groupJoe Gildea28 December 2015 | Rendiconti del Circolo Matematico di Palermo (1952 -), Vol. 65, No. 1Torsion units in the integral group ring of PSL(3, 4)Joe Gildea and Alexander Tylyshchak7 September 2015 | Journal of Algebra and Its Applications, Vol. 15, No. 01A Sylow theorem for the integral group ring of PSL(2,q)Leo Margolis1 Jan 2016 | Journal of Algebra, Vol. 445ZASSENHAUS CONJECTURE FOR INTEGRAL GROUP RING OF SIMPLE LINEAR GROUPSJOE GILDEA9 May 2013 | Journal of Algebra and Its Applications, Vol. 12, No. 06Unit Groups of Integral Group Rings: Old and NewWolfgang Kimmerle3 September 2013 | Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. 115, No. 2INTEGRAL GROUP RING OF THE MATHIEU SIMPLE GROUP M24VICTOR BOVDI and ALEXANDER KONOVALOV7 April 2012 | Journal of Algebra and Its Applications, Vol. 11, No. 01TORSION UNITS IN INTEGRAL GROUP RINGS OF CONWAY SIMPLE GROUPSV. A. BOVDI, A. B. KONOVALOV, and S. LINTON20 November 2011 | International Journal of Algebra and Computation, Vol. 21, No. 04Torsion units in integral group ring of Higman-Sims simple groupVictor Bovdi and Alexander Konovalov1 Mar 2010 | Studia Scientiarum Mathematicarum Hungarica, Vol. 47, No. 1Integral group ring of Rudvalis simple groupV. A. Bovdi and A. B. Konovalov14 July 2009 | Ukrainian Mathematical Journal, Vol. 61, No. 1Finite groups of units and their composition factors in the integral group rings of the groups PSL(2, q)Martin Hertweck, Christian R. Höfert and Wolfgang Kimmerle1 Jan 2009 | Journal of Group Theory, Vol. 12, No. 6The Orders of Torsion Units in Integral Group Rings of Finite Solvable GroupsMartin Hertweck28 October 2008 | Communications in Algebra, Vol. 36, No. 10Unit Groups of Integral Finite Group Rings with No Noncyclic Abelian Finite p -SubgroupsMartin Hertweck17 Sep 2008 | Communications in Algebra, Vol. 36, No. 9Integral Group Ring of the Mathieu Simple Group M23V. A. Bovdi and A. B. Konovalov20 June 2008 | Communications in Algebra, Vol. 36, No. 7Zassenhaus Conjecture for Groups of Order p2qJen-Hao Liu15 May 2008 | Communications in Algebra, Vol. 36, No. 5Zassenhaus conjecture for A 6Martin Hertweck3 October 2008 | Proceedings Mathematical Sciences, Vol. 118, No. 2Torsion Units in Integral Group Ring of the Mathieu Simple Group M22V. A. Bovdi, A. B. Konovalov and S. Linton1 February 2010 | LMS Journal of Computation and Mathematics, Vol. 11Zassenhaus conjecture for central extensions of S 5Victor Bovdi and Martin Hertweck1 Jan 2008 | Journal of Group Theory, Vol. 11, No. 1Torsion Units in the Integral Group Ring of the Alternating Group of Degree 6Mohamed Ahmed M. Salim26 Nov 2007 | Communications in Algebra, Vol. 35, No. 12Integral group ring of the Mathieu simple groupM 12V. A. Bovdi, A. B. Konovalov and S. Siciliano1 Feb 2007 | Rendiconti del Circolo Matematico di Palermo, Vol. 56, No. 1 Recommended Vol. 13, No. 02 Metrics History Received 20 February 2005 Revised 29 September 2005 Keywordsintegral group ringtorsion unitZassenhaus conjecturePDF download
Referência(s)