A Statistical Property of the Sieve of Eratosthenes
1992; Society for Industrial and Applied Mathematics; Volume: 36; Issue: 3 Linguagem: Inglês
10.1137/1136074
ISSN1095-7219
Autores Tópico(s)Advanced Mathematical Identities
ResumoPrevious article Next article A Statistical Property of the Sieve of EratosthenesV. A. PlaksinV. A. Plaksinhttps://doi.org/10.1137/1136074PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] I. P. Kubilius, Probabilistic methods in the theory of numbers, Translations of Mathematical Monographs, Vol. 11, American Mathematical Society, Providence, R.I., 1964xviii+182 28:3956 0133.30203 CrossrefGoogle Scholar[2] Peter D. T. A. Elliott, Probabilistic number theory. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 240, Springer-Verlag, Berlin, 1980xviii+341+xxxiv, New York 82h:10002b CrossrefGoogle Scholar[3] Krishnaswami Alladi, The distribution of $\nu (n)$ in the sieve of Eratosthenes, Quart. J. Math. Oxford Ser. (2), 33 (1982), 129–148 83h:10081 0483.10049 CrossrefGoogle Scholar[4] G. J. Babu, Distribution of the values of $\omega$ in short intervals, Acta Math. Acad. Sci. Hungar., 40 (1982), 135–137 84e:10062 0462.10038 CrossrefGoogle Scholar[5] Gosuke Yamano, A note on the number of prime factors of integers in short intervals, Math. J. Okayama Univ., 27 (1985), 159–171 87j:11099 0591.10044 Google Scholar[6] I. Katai, A remark on a paper of K. RamachandraNumber theory (Ootacamund, 1984), Lecture Notes in Math., Vol. 1122, Springer, Berlin, 1985, 147–152 86m:11069 0556.10030 CrossrefGoogle Scholar[7] Atle Selberg, Sieve methods1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., Providence, R.I., 1971, 311–351 58:27861 0222.10048 CrossrefGoogle Scholar[8] Heini Halberstam and , Klaus Friedrich Roth, Sequences, Springer-Verlag, New York, 1983xviii+292, Berlin 83m:10094 0498.10001 CrossrefGoogle Scholar[9] Hugh L. Montgomery, The analytic principle of the large sieve, Bull. Amer. Math. Soc., 84 (1978), 547–567 57:5931 0408.10033 CrossrefGoogle Scholar Previous article Next article FiguresRelatedReferencesCited byDetails Volume 36, Issue 3| 1992Theory of Probability & Its Applications History Submitted:15 February 1989Published online:17 July 2006 InformationCopyright © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1136074Article page range:pp. 608-614ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics
Referência(s)