Experimental Studies on the Duration of Life. XII. Influence of Temperature during the Larval Period and Adult Life on the Duration of the Life of the Imago of Drosophila melanogaster
1929; University of Chicago Press; Volume: 63; Issue: 684 Linguagem: Inglês
10.1086/280236
ISSN1537-5323
Autores Tópico(s)Genetics, Aging, and Longevity in Model Organisms
ResumoPrevious articleNext article No AccessExperimental Studies on the Duration of Life. XII. Influence of Temperature during the Larval Period and Adult Life on the Duration of the Life of the Imago of Drosophila melanogasterW. W. Alpatov and Raymond PearlW. W. Alpatov and Raymond PearlPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 63, Number 684Jan. - Feb., 1929 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/280236 Views: 20Total views on this site Citations: 86Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:Daniel E.L. Promislow, Thomas Flatt, Russell Bonduriansky The Biology of Aging in Insects: From Drosophila to Other Insects and Back, Annual Review of Entomology 67, no.11 (Jan 2022): 83–103.https://doi.org/10.1146/annurev-ento-061621-064341Dacotah Melicher, Amanda M. Wilson, George D. Yocum, Joseph P. Rinehart Fluctuating thermal regimes extend longevity and maintain fecundity to increase shelf‐life of Drosophila melanogaster cultures, Physiological Entomology 46, no.3-43-4 (May 2021): 179–188.https://doi.org/10.1111/phen.12357Lucia Rackova, Mojmir Mach, Zuzana Brnoliakova An update in toxicology of ageing, Environmental Toxicology and Pharmacology 84 (May 2021): 103611.https://doi.org/10.1016/j.etap.2021.103611Thomas Flatt Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster, Genetics 214, no.11 (Jan 2020): 3–48.https://doi.org/10.1534/genetics.119.300160Mark J. Garcia, Nicholas M. Teets Cold stress results in sustained locomotor and behavioral deficits in Drosophila melanogaster, Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 331, no.33 (Jan 2019): 192–200.https://doi.org/10.1002/jez.2253Marko Brankatschk, Theresia Gutmann, Oskar Knittelfelder, Alessandra Palladini, Elodie Prince, Michal Grzybek, Beate Brankatschk, Andrej Shevchenko, Ünal Coskun, Suzanne Eaton A Temperature-Dependent Switch in Feeding Preference Improves Drosophila Development and Survival in the Cold, Developmental Cell 46, no.66 (Sep 2018): 781–793.e4.https://doi.org/10.1016/j.devcel.2018.05.028Roy Faiman, Samantha Solon-Biet, Margery Sullivan, Diana L. Huestis, Tovi Lehmann The contribution of dietary restriction to extended longevity in the malaria vector Anopheles coluzzii, Parasites & Vectors 10, no.11 (Mar 2017).https://doi.org/10.1186/s13071-017-2088-6Ilias Kounatidis, Stanislava Chtarbanova, Yang Cao, Margaret Hayne, Dhruv Jayanth, Barry Ganetzky, Petros Ligoxygakis NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration, Cell Reports 19, no.44 (Apr 2017): 836–848.https://doi.org/10.1016/j.celrep.2017.04.007Renu Yadav, Soram Idiyasan Chanu, Kritika Raj, Nisha, Surajit Sarkar Drosophila melanogaster: A Prime Experimental Model System for Aging Studies, (Oct 2016): 3–33.https://doi.org/10.1007/978-981-10-2155-8_1Marisa M. Oliveira, Alexander W. Shingleton, Christen K. Mirth, Marc Robinson-Rechavi Coordination of Wing and Whole-Body Development at Developmental Milestones Ensures Robustness against Environmental and Physiological Perturbations, PLoS Genetics 10, no.66 (Jun 2014): e1004408.https://doi.org/10.1371/journal.pgen.1004408N. Ya. Waisman, M. D. Golubovsky, Yu. Yu. Ilinskii Differences in the parameters of longevity and its sex-specificity in human populations and modeling them in drosophila, Advances in Gerontology 3, no.44 (Nov 2013): 268–276.https://doi.org/10.1134/S2079057013040097N. Ja. Weisman, M. D. Golubovsky Genetic and epigenetic effects of lgl tumor suppressor mutations on longevity under temperature stress, Biology Bulletin 36, no.11 (Feb 2009): 20–27.https://doi.org/10.1134/S106235900901004XJoep M.S. Burger, Daniel E.L. Promislow Are functional and demographic senescence genetically independent?, Experimental Gerontology 41, no.1111 (Nov 2006): 1108–1116.https://doi.org/10.1016/j.exger.2006.08.008Thomas E. Johnson For the special issue: The nematode Caenorhabditis elegans in aging research, Experimental Gerontology 41, no.1010 (Oct 2006): 887–889.https://doi.org/10.1016/j.exger.2006.08.002J. Miquel Integración de teorías del envejecimiento (parte I), Revista Española de Geriatría y Gerontología 41, no.11 (Jan 2006): 55–63.https://doi.org/10.1016/S0211-139X(06)72923-7Stephen L. Helfand, Blanka Rogina Genetics of Aging in the Fruit Fly, Drosophila melanogaster, Annual Review of Genetics 37, no.11 (Dec 2003): 329–348.https://doi.org/10.1146/annurev.genet.37.040103.095211Stephen L Helfand, Blanka Rogina From Genes to Aging in Drosophila, (Jan 2003): 67–109.https://doi.org/10.1016/S0065-2660(03)01002-2 Marc Tatar , Susan A. Chien , and Nicholas Kiefer Priest Negligible Senescence during Reproductive Dormancy in Drosophila melanogaster. M. Tatar et al., The American Naturalist 158, no.33 (Jul 2015): 248–258.https://doi.org/10.1086/321320Z.A. Medvedev Alex Comfort (1920–2000) known and unknown. A personal account, Experimental Gerontology 35, no.88 (Oct 2000): 897–900.https://doi.org/10.1016/S0531-5565(00)00201-1S. D. Pletcher, A. A. Khazaeli, J. W. Curtsinger Why Do Life Spans Differ? Partitioning Mean Longevity Differences in Terms of Age-Specific Mortality Parameters, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 55, no.88 (Aug 2000): B381–B389.https://doi.org/10.1093/gerona/55.8.B381S. M. Woods, N. D. G. White, R. N. Sinha Simulation of generation times of the rusty grain beetle, Cryptolestes ferrugineus , in farm‐stored grain in the canadian prairies, 1952‐1990, Population Ecology 39, no.11 (Nov 2018): 47–56.https://doi.org/10.1007/BF02765249Linda Partridge, Brian Barrie, Nicholas H. Barton, Kevin Fowler, Vernon French RAPID LABORATORY EVOLUTION OF ADULT LIFE-HISTORY TRAITS IN DROSOPHILA MELANOGASTER IN RESPONSE TO TEMPERATURE, Evolution 49, no.33 (May 2017): 538–544.https://doi.org/10.1111/j.1558-5646.1995.tb02285.xG. Bagci, A. N. Bozcuk Does an extension of the developmental period in Drosophila cause the prolongation of adult life?, AGE 17, no.33 (Jul 1994): 99–102.https://doi.org/10.1007/BF02435013N.D.G. White, R.J. Bell Effect of temperature, food density and sub-lethal exposure to malathion on aging in Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae), Journal of Stored Products Research 30, no.33 (Jul 1994): 187–199.https://doi.org/10.1016/0022-474X(94)90047-LD. Atkinson Temperature and Organism Size—A Biological Law for Ectotherms?, (Jan 1994): 1–58.https://doi.org/10.1016/S0065-2504(08)60212-3B J Zwaan, R Bijlsma, R F Hoekstra On the developmental theory of ageing. II. The effect of developmental temperature on longevity in relation to adult body size in D. melanogaster, Heredity 68, no.22 (Feb 1992): 123–130.https://doi.org/10.1038/hdy.1992.19Isamu Yonemura, Tomio Motoyama, Hayato Hasekura, Barry Boettcher Relationship between genotypes of longevity genes and developmental speed in Drosophila melanogaster, Heredity 66, no.11 (Feb 1991): 143–149.https://doi.org/10.1038/hdy.1991.18G. Benzi, O. Pastoris, F. Marzatico, R. F. Villa Cerebral Enzyme Antioxidant System. Influence of Aging and Phosphatidylcholine, Journal of Cerebral Blood Flow & Metabolism 9, no.33 (Jun 2016): 373–380.https://doi.org/10.1038/jcbfm.1989.56Arthur K. Balin, Robert G. Allen Molecular Bases of Biologic Aging, Clinics in Geriatric Medicine 5, no.11 (Feb 1989): 1–21.https://doi.org/10.1016/S0749-0690(18)30692-XG. Benzi, O. Pastoris, R. F. Villa Changes induced by aging and drug treatment on cerebral enzymatic antioxidant system, Neurochemical Research 13, no.55 (May 1988): 467–478.https://doi.org/10.1007/BF01268883D. L. Ruddle, L. S. Yengoyan, J. Miquel, R. Marcuson, J. E. Fleming Propyl gallate delays senescence in Drosophila melanogaster, AGE 11, no.22 (Apr 1988): 54–58.https://doi.org/10.1007/BF02431773M. Hani Soliman, Frédéric A. Lints, Cécile V. Lints, Pol Bullens Bibliography: longevity, ageing and parental age effects in Drosophila (1907–86), (Jan 1988): 241–293.https://doi.org/10.1007/978-1-4899-2683-8_19Jaime Miquel, James E. Fleming Testing ageing theories, (Jan 1988): 17–29.https://doi.org/10.1007/978-1-4899-2683-8_2Jean R. David Temperature, (Jan 1988): 33–45.https://doi.org/10.1007/978-1-4899-2683-8_3Frédéric A. Lints Genetics, (Jan 1988): 99–118.https://doi.org/10.1007/978-1-4899-2683-8_8Robert Arking, Steven Buck, Robert A. Wells, Robert Pretzlaff Metabolic rates in genetically based long lived strains of Drosophila, Experimental Gerontology 23, no.11 (Jan 1988): 59–76.https://doi.org/10.1016/0531-5565(88)90020-4Harold R. Massie, Trevor R. Williams Mitochondrial DNA and life span changes in normal and dewinged Drosophila at different temperatures, Experimental Gerontology 22, no.22 (Jan 1987): 139–153.https://doi.org/10.1016/0531-5565(87)90048-9Arthur K. Balin, Robert G. Allen Mechanisms of Biologic Aging, Dermatologic Clinics 4, no.33 (Jul 1986): 347–358.https://doi.org/10.1016/S0733-8635(18)30798-8J. E. Fleming Role of Mitochondria in Drosophila Aging, (Jan 1986): 130–141.https://doi.org/10.1007/978-3-642-70853-4_10R. S. Sohal The Rate of Living Theory: A Contemporary Interpretation, (Jan 1986): 23–44.https://doi.org/10.1007/978-3-642-70853-4_3R.S. Sohal, R.G. Allen Relationship between oxygen metabolism, aging and development, Advances in Free Radical Biology & Medicine 2, no.11 (Jan 1986): 117–160.https://doi.org/10.1016/S8755-9668(86)80026-6Malcolm B. Baird, Joseph Liszczynskyj Genetic control of adult lifespan in Drosophila melanogaster, Experimental Gerontology 20, no.3-43-4 (Jan 1985): 171–177.https://doi.org/10.1016/0531-5565(85)90034-8Peter J. Mayer, George T. Baker Genetic Aspects of Drosophila as a Model System of Eukaryotic Aging, (Jan 1985): 61–102.https://doi.org/10.1016/S0074-7696(08)60579-3A.C. Economos, F.A. Lints Growth rate and life span in Drosophila. III. Effect of body size and development temperature on the biphasic relationship between growth rate and life span, Mechanisms of Ageing and Development 27, no.22 (Oct 1984): 153–160.https://doi.org/10.1016/0047-6374(84)90040-XJaime Miquel, Angelos C. Economos, John E. Johnson A Systems Analysis—Thermodynamic View of Cellular and Organismic Aging, (Jan 1984): 247–280.https://doi.org/10.1007/978-1-4757-1430-2_5David Leffelaar, Thomas Grigliatti Age-dependent behavior loss in adult Drosophila melanogaster, Developmental Genetics 4, no.33 (Jan 1983): 211–227.https://doi.org/10.1002/dvg.1020040307Jaime Miquel, James Fleming, Angelos C. Economos Antioxidants, metabolic rate and aging in Drosophila, Archives of Gerontology and Geriatrics 1, no.22 (Sep 1982): 159–165.https://doi.org/10.1016/0167-4943(82)90016-4J.E. Fleming, H.A. Leon, J. Miquel Effects of ethidium bromide on development and aging of Drosophila: Implications for the free radical theory of aging, Experimental Gerontology 16, no.33 (Jan 1981): 287–293.https://doi.org/10.1016/0531-5565(81)90024-3 Bibliography, (Jan 1977): 392–418.https://doi.org/10.1016/B978-0-12-673260-3.50017-XJaime Miquel, Paul R. Lundgren, Klaus G. Bensch, Henri Atlan Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster, Mechanisms of Ageing and Development 5 (Jan 1976): 347–370.https://doi.org/10.1016/0047-6374(76)90034-8Y. Cohet Epigenetic influences on the lifespan of the Drosophila: Existence of an optimal growth temperature for adult longevity, Experimental Gerontology 10, no.3-43-4 (Aug 1975): 181–184.https://doi.org/10.1016/0531-5565(75)90029-7S.S. Ragland, R.S. Sohal Ambient temperature, physical activity and aging in the housefly, Musca domestica, Experimental Gerontology 10, no.55 (Jan 1975): 279–289.https://doi.org/10.1016/0531-5565(75)90005-4H. V. Samis, M. B. Baird, H. R. Massie Deuterium Oxide Effect on Temperature-Dependent Survival in Populations of Drosophila melanogaster, Science 183, no.41234123 (Feb 1974): 427–428.https://doi.org/10.1126/science.183.4123.427ROBERT GETTY, CYNTHIA RUTH ELLENPORT Laboratory Animals in Aging Studies, (Jan 1974): 41–179.https://doi.org/10.1016/B978-0-12-278005-9.50008-1Morris Rockstein, Jaime Miquel AGING IN INSECTS, (Jan 1973): 371–478.https://doi.org/10.1016/B978-0-12-591601-1.50013-2F.A. Lints, G. Gruwez What determines the duration of development in drosphila melanogaster?, Mechanisms of Ageing and Development 1 (Jan 1972): 285–297.https://doi.org/10.1016/0047-6374(72)90074-7F.A. Lints, C.V. Lints Influence of preimaginal environment on fecundity and ageing in Drosophila melanogaster hybrids—II. Preimaginal temperature, Experimental Gerontology 6, no.66 (Dec 1971): 417–426.https://doi.org/10.1016/0531-5565(71)90021-0F.A. Lints, C.V. Lints Influence of preimaginal environment on fecundity and ageing in Drosophila melanogaster hybrids—III. Developmental speed and life-span, Experimental Gerontology 6, no.66 (Dec 1971): 427–445.https://doi.org/10.1016/0531-5565(71)90022-2J. Van Herrewege, J. David Reduction of longevity in Drosophila by chronic ingestion of a bacterial toxin, Experimental Gerontology 5, no.22 (Jul 1970): 131–143.https://doi.org/10.1016/0531-5565(70)90002-1CHARLES H. BARROWS, ROY E. BEAUCHENE Aging and Nutrition, (Jan 1970): 163–193.https://doi.org/10.1016/B978-0-12-048004-3.50010-4BERNARD L. STREHLER Environmental Factors in Aging and Mortality, (Jan 1970): 105–148.https://doi.org/10.1016/B978-0-12-440650-6.50022-4F.A. Lints, C.V. Lints Influence of preimaginal environment on fecundity and ageing in Drosophila melanogaster hybrids I. Preimaginal population density, Experimental Gerontology 4, no.44 (Dec 1969): 231–244.https://doi.org/10.1016/0531-5565(69)90011-4Bernard L. Strehler Environmental factors in aging and mortality, Environmental Research 1, no.11 (Jun 1967): 46–88.https://doi.org/10.1016/0013-9351(67)90005-9Jean David, Marie-Françoise Clavel Influence de la température subie au cours du développement sur divers caractères biométriques des adultes de Drosophila melanogaster Meigen, Journal of Insect Physiology 13, no.55 (May 1967): 717–729.https://doi.org/10.1016/0022-1910(67)90121-7Arnold M. Clark, Robert N. Kidwell Effects of developmental temperature on the adult life span of Mormoniella vitripennis females, Experimental Gerontology 2, no.22 (May 1967): 79–84.https://doi.org/10.1016/0531-5565(67)90005-8George A. Sacher THE COMPLEMENTARITY OF ENTROPY TERMS FOR THE TEMPERATURE-DEPENDENCE OF DEVELOPMENT AND AGING, Annals of the New York Academy of Sciences 138, no.2 Interdiscipli2 Interdiscipli (Feb 1967): 680–712.https://doi.org/10.1111/j.1749-6632.1967.tb55016.xA. O. Tantawy Effects of temperature and X-ray irradiation on intrinsic growth rate in populations ofDrosophila pseudoobscura, Genetica 34, no.11 (Dec 1964): 34–45.https://doi.org/10.1007/BF01664177M. J. Heuvel THE EFFECT OF REARING TEMPERATURE ON THE WING LENGTH, THORAX LENGTH, LEG LENGTH AND OVARIOLE NUMBER OF THE ADULT MOSQUITO, AEDES AEGYPTI (L.), Transactions of the Royal Entomological Society of London 115, no.77 (Apr 2009): 197–216.https://doi.org/10.1111/j.1365-2311.1963.tb00819.xCarleton Ray The application of Bergmann's and Allen's rules to the poikilotherms, Journal of Morphology 106, no.11 (Jan 1960): 85–108.https://doi.org/10.1002/jmor.1051060104J. MAYNARD SMITH Prolongation of the Life of Drosophila subobscura by a Brief Exposure of Adults to a High Temperature, Nature 181, no.46074607 (Feb 1958): 496–497.https://doi.org/10.1038/181496a0F. S. Bodenheimer Physiological and Ecological Life-Tables and Connected Problems, (Jan 1958): 12–39.https://doi.org/10.1007/978-94-017-6310-3_2Walter Nef Die Variabilit�t der Manifestation der MutantePearl (Pl) vonDrosophila melanogaster, Zeitschrift f�r Vererbungslehre 89, no.22 (Jan 1958): 272–319.https://doi.org/10.1007/BF00890114ALEX COMFORT BIOLOGICAL ASPECTS OF SENESCENCE, Biological Reviews 29, no.33 (Aug 1954): 284–329.https://doi.org/10.1111/j.1469-185X.1954.tb00598.xALEX COMFORT Absence of a Lansing Effect in Drosophila subobscura, Nature 172, no.43674367 (Jul 1953): 83–84.https://doi.org/10.1038/172083a0Morris Henry Harnly Size of parts present vs. Number of parts present in the development of Drosophila melanogaster, Journal of Experimental Zoology 118, no.11 (Oct 1951): 21–36.https://doi.org/10.1002/jez.1401180103K. A. LORD THE EFFECT OF INSECTICIDES ON THE RESPIRATION OF ORYZAEPHILUS SURINAMENSIS: AN ATTEMPT TO COMPARE THE SPEEDS OF ACTION OF A NUMBER OF D.D.T. ANALOGUES, Annals of Applied Biology 36, no.11 (Mar 1949): 113–138.https://doi.org/10.1111/j.1744-7348.1949.tb06403.xH Munbo Fox The Activity and Metabolism of Poikilothermal Animals in Different Latitudes.—V, Proceedings of the Zoological Society of London A109, no.2-32-3 (Jul 2010): 141–156.https://doi.org/10.1111/j.1096-3642.1939.tb03360.x Melia R. Reed The Olfactory Reactions of Drosophila Melanogaster Meigen to the Products of Fermenting Banana, Physiological Zoology 11, no.33 (Sep 2015): 317–325.https://doi.org/10.1086/physzool.11.3.30151465 Raymond Pearl , and John R. Miner Experimental Studies on the Duration of Life. XIV. The Comparative Mortality of Certain Lower Organisms, The Quarterly Review of Biology 10, no.11 (Oct 2015): 60–79.https://doi.org/10.1086/394476Takeo Imai The influence of temperature on variation and inheritance of bodily dimensions inDrosophila melanogaster, Wilhelm Roux' Archiv f�r Entwicklungsmechanik der Organismen 128, no.33 (Jan 1933): 634–660.https://doi.org/10.1007/BF00649866W. W. Alpatov Egg production in Drosophila melanogaster and some factors which influence it, Journal of Experimental Zoology 63, no.11 (Aug 1932): 85–111.https://doi.org/10.1002/jez.1400630104A. D. IMMS TEMPERATURE AND HUMIDITY IN RELATION TO PROBLEMS OF INSECT CONTROL, Annals of Applied Biology 19, no.22 (May 1932): 125–143.https://doi.org/10.1111/j.1744-7348.1932.tb04311.xA. H. Hersh, Esther Ward The effect of temperature on wing size in reciprocal heterozygotes of vestigial in Drosophila melanogaster, Journal of Experimental Zoology 61, no.22 (Feb 1932): 223–244.https://doi.org/10.1002/jez.1400610204B. P. Uvarov INSECTS AND CLIMATE., Transactions of the Royal Entomological Society of London 79, no.11 (Apr 2009): 1–232.https://doi.org/10.1111/j.1365-2311.1931.tb00696.xW. W. ALPATOV PHENOTYPICAL VARIATION IN BODY AND CELL SIZE OF DROSOPHILA MELANOGASTER, The Biological Bulletin 58, no.11 (Sep 2016): 85–103.https://doi.org/10.2307/1537121Ernst Janisch Experimentelle untersuchungen �ber die wirkung der umweltfaktoren auf insekten, Zeitschrift f�r Morphologie und �kologie der Tiere 17, no.1-21-2 (Jan 1930): 339–416.https://doi.org/10.1007/BF00406262
Referência(s)