Artigo Revisado por pares

Application of Backstep Coanda Flap for Supersonic Coflowing Fluidic Thrust-Vector Control

2014; American Institute of Aeronautics and Astronautics; Volume: 52; Issue: 10 Linguagem: Inglês

10.2514/1.j052971

ISSN

1533-385X

Autores

MyungJun Song, Sanghoon Park, Yeol Lee,

Tópico(s)

Plasma and Flow Control in Aerodynamics

Resumo

No AccessTechnical NoteApplication of Backstep Coanda Flap for Supersonic Coflowing Fluidic Thrust-Vector ControlMyungJun Song, SangHoon Park and Yeol LeeMyungJun SongDepartment of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-si 412-791, Republic of Korea, SangHoon ParkDepartment of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-si 412-791, Republic of Korea and Yeol LeeDepartment of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-si 412-791, Republic of KoreaPublished Online:16 Sep 2014https://doi.org/10.2514/1.J052971SectionsView Full TextPDFPDF Plus ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Deere K. A., "Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center," AIAA Paper 2003-3800, June 2003. Google Scholar[2] Wing D. J., "Static Investigation of Two Fluidic Thrust-Vectoring Concepts on a Two-Dimensional Convergent Divergent Nozzle," NASA TM-4574, 1994. Google Scholar[3] Strykowski P. J., Krothapalli A. and Forliti D. J., "Counterflow Thrust Vectoring of Supersonic Jets," AIAA Journal, Vol. 34, No. 11, 1996, pp. 2306–2314. doi:https://doi.org/10.2514/3.13395 AIAJAH 0001-1452 LinkGoogle Scholar[4] Alvi F. S. and Strykowsk P., "Forward Flight Effects on Counterflow Thrust Vector Control of a Supersonic Jet," AIAA Journal, Vol. 37, No. 2, 1999, pp. 279–281. doi:https://doi.org/10.2514/2.705 AIAJAH 0001-1452 LinkGoogle Scholar[5] Yagle P. J., Miller D. N., Gin K. B. and Hamstra J. W., "Demonstration of Fluidic Throat Skewing for Thrust Vectoring in Structurally Fixed Nozzles," Journal of Engineering for Gas Turbines and Power, Vol. 123, No. 3, 2001, pp. 502–507. doi:https://doi.org/10.1115/1.1361109 JETPEZ 0742-4795 CrossrefGoogle Scholar[6] Flamm J. D., Deere K. A., Mason M. L., Berrier B. L. and Johnson S. K., "Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept," AIAA Paper 2006-3701, June 2006. LinkGoogle Scholar[7] Neely A. J., Gesto F. N. and Young J., "Performance Studies of Shock Vector Control Fluidic Thrust Vectoring," AIAA Paper 2007-5086, July 2007. LinkGoogle Scholar[8] Mason M. S. and Crowther W. J., "Fluidic Thrust Vectoring for Low Observable Air Vehicle," AIAA Paper 2004-2210, July 2004. LinkGoogle Scholar[9] Saghafi F. and Banazadeh A., "Co-Flow Fluidic Thrust Vectoring Requirements for Longitudinal and Lateral Trim Purposes," AIAA Paper 2006-4980, July 2006. LinkGoogle Scholar[10] Clarke A. J., "The Conceptual Design of Novel Future UAV's Incorporating Advanced Technology Research Components," Ph.D. Thesis, Cranfield Univ., Bedfordshire, England, U.K., 2011. Google Scholar[11] Banazadeh A., Saghafi F., Ghoreyshi M. and Pilidis P., "Experimental and Computational Investigation into the Use of Co-Flow Fluidic Thrust Vectoring on a Small Gas Turbine," Aeronautical Journal, Vol. 112, No. 1127, 2008, pp. 17–25. 0001-9240 CrossrefGoogle Scholar[12] Crowther W. J., Wilde P. I. A., Gill K. and Michie S. M., "Towards Integrated Design of Fluidic Flight Controls for a Flapless Aircraft," Aeronautical Journal, Vol. 113, No. 1149, 2009, pp. 699–713. 0001-9240 CrossrefGoogle Scholar[13] Yoon S. H., Jun D. H., Heo J. Y., Sung H. G. and Lee Y., "Experimental Study of Thrust Vectoring of Supersonic Jet Using Co-Flowing Coanda Effects," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 11, 2012, pp. 927–933. doi:https://doi.org/10.5139/JKSAS.2012.40.11.927 1225-1348 CrossrefGoogle Scholar[14] Gross A. and Fasel H. F., "Coanda Wall Jet Calculations Using One- and Two-Equation Turbulence Models," AIAA Journal, Vol. 44, No. 9, 2006, pp. 2095–2107. doi:https://doi.org/10.2514/1.3506 AIAJAH 0001-1452 LinkGoogle Scholar[15] Runyan R. B., Rynd J. P. and Seely J. F., "Thrust Stand Design Principles," AIAA Paper 1992-3976, July 1992. LinkGoogle Scholar[16] Ramaswamy M. A., Alvi F. S. and Krothapalli A., "Special 6-Component Jet Rig Balance for Studying New Thrust Vectoring Concepts," International Congress on Instrumentation in Aerospace Simulation Facilities, IEEE Publ., Piscataway, NJ, 1997, pp. 202–213. Google Scholar[17] Song M. J., Chang H. B., Cho Y. H. and Lee Y., "Development of the High-Accuracy Multi-Component Balance for Fluidic Thrust Vectoring Nozzle of UAV," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 41, No. 2, 2013, pp. 142–149. doi:https://doi.org/10.5139/JKSAS.2013.41.2.142 1225-1348 CrossrefGoogle Scholar[18] Gregory-Smith D. G. and Senior P., "The Effects of Base Steps and Axisymmetry on Supersonic Jets over Coanda Surfaces," International Journal of Heat and Fluid Flow, Vol. 15, No. 4, 1994, pp. 291–298. doi:https://doi.org/10.1016/0142-727X(94)90014-0 IJHFD2 0142-727X CrossrefGoogle Scholar[19] Carpenter P. W. and Smith C., "The Aeroacoustics and Aerodynamics of High-Speed Coanda Devices, Part 2: Effects of Modifications for Flow Control and Noise Reduction," Journal of Sound and Vibration, Vol. 208, No. 5, 1997, pp. 803–822. doi:https://doi.org/10.1006/jsvi.1997.1203 JSVIAG 0022-460X CrossrefGoogle Scholar Previous article Next article

Referência(s)
Altmetric
PlumX