Artigo Revisado por pares

Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement

2003; American Institute of Physics; Volume: 83; Issue: 11 Linguagem: Inglês

10.1063/1.1611642

ISSN

1520-8842

Autores

Benjamin S. Williams, Sushil Kumar, Hans Callebaut, Qing Hu, John L. Reno,

Tópico(s)

Photonic and Optical Devices

Resumo

We report lasing at ∼3.0 THz (λ≈98–102 μm) in a quantum-cascade structure in which mode confinement is provided by a double-sided metal waveguide. The depopulation mechanism is based on resonant phonon scattering, as in our previous work. Lasing takes place in pulsed mode up to a heat-sink temperature of 77 K. The waveguide consists of metallic films placed above and below the 10-μm-thick multiple-quantum-well gain region, which gives low losses and a modal confinement factor of nearly unity. Fabrication takes place via low-temperature metallic wafer bonding and subsequent substrate removal using selective etching. This type of waveguide is expected to be increasingly advantageous at even longer wavelengths.

Referência(s)
Altmetric
PlumX