HIV‐1 Protease inhibitors: Their development, mechanism of action and clinical potential
1995; Wiley; Volume: 5; Issue: 1 Linguagem: Inglês
10.1002/rmv.1980050104
ISSN1099-1654
AutoresDeenan Pillay, Martin L. Bryant, Daniel P. Getman, Douglas D. Richman,
Tópico(s)HIV/AIDS Research and Interventions
ResumoReviews in Medical VirologyVolume 5, Issue 1 p. 23-33 Classic Paper HIV-1 Protease inhibitors: Their development, mechanism of action and clinical potential D. Pillay, Corresponding Author D. Pillay Regional Virus Laboratory, Regional Public Health Laboratory, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham B9 5SS, UKRegional Virus Laboratory, Regional Public Health Laboratory, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham B9 5SS, UKSearch for more papers by this authorM. Bryant, M. Bryant G. D. Searle and Co., 700 Chesterfield Parkway North, Mail Zone AA51, St. Louis, Missouri 63198, USASearch for more papers by this authorD. Getman, D. Getman G. D. Searle and Co., 700 Chesterfield Parkway North, Mail Zone AA51, St. Louis, Missouri 63198, USASearch for more papers by this authorD. D. Richman, D. D. Richman San Diego VA Medical Center and University of California San Diego, Departments of Pathology and Medicine, 0679, 9500 Gilman Drive, La Jolla, CA 92093–0679, USASearch for more papers by this author D. Pillay, Corresponding Author D. Pillay Regional Virus Laboratory, Regional Public Health Laboratory, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham B9 5SS, UKRegional Virus Laboratory, Regional Public Health Laboratory, Birmingham Heartlands Hospital, Bordesley Green East, Birmingham B9 5SS, UKSearch for more papers by this authorM. Bryant, M. Bryant G. D. Searle and Co., 700 Chesterfield Parkway North, Mail Zone AA51, St. Louis, Missouri 63198, USASearch for more papers by this authorD. Getman, D. Getman G. D. Searle and Co., 700 Chesterfield Parkway North, Mail Zone AA51, St. Louis, Missouri 63198, USASearch for more papers by this authorD. D. Richman, D. D. Richman San Diego VA Medical Center and University of California San Diego, Departments of Pathology and Medicine, 0679, 9500 Gilman Drive, La Jolla, CA 92093–0679, USASearch for more papers by this author First published: March 1995 https://doi.org/10.1002/rmv.1980050104Citations: 24AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Ratner, L., Haseltine, W. A., Patarca, R. et al. (1985). Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 316, 277–284. 2 Kramer, R. A., Schaber, M. D., Skalka, A. M., Ganguly, K., Wong-Staal, F. and Reddy, E. P. (1986). HTLV-III gag protein is processed in yeast cells by the virus pol-protease. Science 231, 1580–1585. 3 Debouck, C., Gorniak, J. G., Strickler, J. E., Meek, T. D., Metcalf, B. W. and Rosenberg, M. (1987). Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of thegag precursor. Proc. Natl Acad. Sci. USA 84, 8903–8906. 4 Kohl, N. E., Emini, E. A., Schleif, W. A. et al. (1988). Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl Acad. Sci. USA 85, 4686–4690. 5 Kay, J. and Dunn, B. M. (1990). Viral proteinases: weakness in strength. Biochim. Biophys. Acta 1048, 1–18. 6 Dougherty, W. G. and Semler, B. L. (1993). Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Micro-biol. Rev. 57, 781–822. 7 Navia, M. A., Fitzgerald, P. M. D., McKeever, B. M. et al. (1989). Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337, 615–620. 8 Decroly, E., Vandenbranden, M., Ruysschaert, J. M. et al. (1994). The convertases furin and PCl can both cleave the human immunodeficiency virus (HIV)-1 envelope glycoprotein gp160 into gp120 (HIV-1 SU) and gp41 (HIV-1 TM). J. Biol. Chem. 269, 12240–12247. 9 Bukrinsky, M. I., Haggerty, S., Dempsey, M. P. et al. (1993). A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666–669. 10 Stys, D., Blaha, I. and Strop, P. (1993). Structural and functional studies in vitro on the p6 protein from the HIV-1 gag open reading frame. Biochim. Biophys. Acta 1182, 157–161. 11 Gelderblom, H. R., Hausmann, E. H. S., Ózel, M., Pauli, G. and Koch, M. A. (1987) Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156, 171–176. 12 Karacostas, V., Nagashima, K., Gonda, M. A. and Moss, B. (1989). Human immunodeficiency virus-like particle produced by a vaccinia virus expression vector. Proc. Natl Acad. Sci. USA 86, 8964–8967. 13 Overton, H. A., Fujii, Y., Price, I. R. and Jones, I. M. (1989). The protease and gag gene products of the human immunodeficiency virus: authentic cleavage and post-translational modification in an insect cell expression system. Virology 170, 107–116. 14 Jacks, T., Power, M. D., Masiarz, F. R., Luciw, P. A., Barr, P. J. and Varmus, H. E. (1988). Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331, 280–285. 15 Tomasselli, A. G., Howe, W. J., Hui, J. O. et al. (1991). Calcium-free calmodulin is a substrate of proteases from human immunodeficiency viruses 1 and 2. Proteins 10, 1–9. 16 Tomasselli, A. G., Hui, J. O., Adams, L. et al. (1991). Actin, troponin C, alzheimer amyloid precursor protein and pro-interleukin 1 β as substrates of the proteases from human immunodeficiency virus. J. Biol. Chem. 266, 14548–14553. 17 Rivière, Y., Blank, V., Kourilsky, P. and Israël, A. (1991). Processing of the precursor or NF- kB by the HIV-1 protease during acute infection. Nature 350, 625–627. 18 Roberts, M. M., Copeland, T. D. and Oroszlan, S. (1991). In situ processing of a retroviral nucleocapsid protein by the viral proteinase. Protein Eng. 4, 695–700. 19 Nabel, G. J. (1991). Tampering with transcription. Nature 350, 658. 20 Vaishnav, Y. and Wong-Staal, F. (1991). The biochemistry of AIDS. Annu. Rev. Biochem. 60, 577–630. 21 Karacostas, V., Wolffe, E. J., Nagashima, K., Gonda, M. A. and Moss, B. (1993). Overexpression of the HIV-1 gag-pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology 193, 661–671. 22 Bryant, M. and Ratner, L. (1990). Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc. Natl Acad. Sci. USA 87, 523–527. 23 Kaplan, A. H. and Swanstrom, R. (1991). Human immunodeficiency virus type 1 gag proteins are processed in two cellular compartments. Proc. Natl Acad. Sci. USA 88, 4528–4532. 24 Rao, J. K. M., Erickson, J. W., and Wlodawer, A. (1991). Structural and evolutionary relationships between retroviral and eucaryotic aspartic proteinases. Biochemistry 30, 4663–4671. 25 Loeb, D. D., Swanstrom, R., Everitt, L., Manchester, M., Stamper, S. E. and Hutchinson, C. A. III. (1989). Complete mutagenesis of the HIV-1 protease. Nature 340, 397–398. 26 Debouck, C. (1991). Substrate specificity of the human (type 1) and simian immunodeficiency virus proteases. In, Advances in Experimental Medicine and Biology: Structure and Function of the Aspartic Proteinases, ed. by B. M. Dunn, vol. 306, pp. 407–415. Plenum Press, New York. 27 Mervis, R. J., Ahmad, N., Lillehoj, E. P. et al. (1988). The gag gene products of human immunodeficiency virus type 1: alignment with the gag open reading frame, identification of posttranslational modifications, and evidence for alternative gag precursors. J. Virol. 62, 3993–4002. 28 Huff, J. R. (1991). HIV protease: a novel chemotherapeutic target for AIDS. J. Med. Chem. 34, 2305–2314. 29 Wlodawer, A. and Erickson, J. W. (1993). Structure-based inhibitors of HIV-1 protease. Annu. Rev. Biochem. 62, 543–585. 30 Getman, D. P., DeCrescenzo, G. A., Heintz, R. M. et al. (1993). Discovery of a novel class of potent HIV-1 protease inhibitors containing the (R)-hydroxyethyl) urea isostere. J. Med. Chem. 36, 288–291. 31 Lam, P. Y. S., Jadhav, P. K., Eyermann, C. J. et al. (1994). Rational design of potent, bioavailable, non-peptide cyclic ureas as HIV protease inhibitors. Science 263, 380–382. 32 Roberts, N. A., Martin, J. A., Kinchington, D. et al. (1990). Rational design of peptide-based HIV proteinase inhibitors. Science 248, 358–361. 33 Kageyama, S., Anderson, B. D., Hoesterey. B. L. et al. (1994). Protein binding of human immunodeficiency virus protease inhibitor NKI-272 and alteration of its in vitro antiretroviral activity in the presence of high concentrations of proteins. Antimicrob. Agents Chemother. 38, 1107–1111. (abstract). 34 Vacca, J. P., Dorsey, B. D., Schleif, W. A. et al. (1994). L.-735,524: an orally bioavailable human immunodeficiency virus type 1 protease inhibitor. Proc. Natl Acad. Sci. USA 91, 4096–4100. 35 Bryant, M., Getman, D., Sherman, J., Yeramian, P., Karim, A. and Stolzenbach, J. (1994). HIV protease inhibitors for asymptomatic infection and AIDS (Abstract). VI International Antiviral Symposium Nice, France, June 7–10 (abstract). 36 Black, P. L., Downs, M. B., Lewis, M. G. et al. (1993). Antiretroviral activities of protease inhibitors against murine leukemia virus and simian immunodeficiency virus in tissue culture. Antimicrob. Agents Chemother. 37, 71–77. 37 Martin, L. N., Soike, K. F., Murphey-Corb, M. et. al. (1994). Effects of U-75875, a peptidomimetic inhibitor of retroviral proteases, on simian immunodeficiency virus infection in rhesus monkeys. Antimicrob. Agents Chemother. 38, 1277–1283. 38 Schätzl, H., Gelderblom, H. R., Nitschko, H. and Von der Helm, K. (1991). Analysis of non-infectious HIV particles produced in presence of HIV proteinase inhibitor. Arch. Virol. 120, 71–81. 39 McQuade, T. J., Tomasselli, A. G., Liu, L. et al. (1990). A synthetic HIV-1 protease inhibitor with antiviral activity arrests HIV-like particle maturation. Science 247, 454–456. 40 Peng, C., Ho, B. K., Chang, T. W. and Chang, T. N. (1989). Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity. J. Virol. 63, 2550–2556. 41 Kaplan, A. H., Zack, J. A., Knigge, M. et al. (1993). Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J. Virol. 67, 4050–4055. 42 Kräusslich, H.-G. (1992). Specific inhibitor of human immunodeficiency virus proteinase prevents the cytotoxic effects of a single-chain proteinase dimer and restores particle formation. J. Virol. 66, 567–572. 43 Baboonian, C., Dalgleish, A., Bountiff, L. et al. (1991). HIV-1 proteinase is required for synthesis of proviral DNA. Biochem. Biophys. Res. Commun. 179, 17–24. 44 Nagy, K., Young, M., Baboonian, C., Merson, J., Whittle, P. and Oroszlan, S. (1994). Antiviral activity of human immunodeficiency virus type 1 protease inhibitors in a single cycle of infection: evidence for a role of protease in the early phase. J. Virol. 68, 757–765. 45 Jacobsen, H., Ahlborn-Laake, L., Gugel, R. and Mous, J. (1992). Progression of early steps of human immunodeficiency virus type 1 replication in the presence of an inhibitor of viral protease. J. Virol. 66, 5087–5091. 46 Lambert, D. M., Petteway, S. R. Jr., McDanal, C. E. et al. (1992). Human immunodeficiency virus type 1 protease inhibitors irreversibly block infectivity of purified virions from chronically infected cells. Antimicrob. Agents Chemother. 36, 982–988. 47 Sato, H., Orenstein, J., Dimitrov, D. and Martin, M. (1992). Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles. Virology 186, 712–724. 48 Lambert, D. M., Bartus, H., Fernandez, A. V. et al. (1993). Synergistic drug interactions of an HIV-1 protease inhibitor with AZT in different in vitro models of HIV-1 infection. Antiviral Res. 21, 327–342. 49 Kageyama, S., Weinstein, J. N., Shirasaka, T. et al. (1992). In vitro inhibition of human immunodeficiency virus (HIV) type 1 replication by C2 symmetry-based HIV protease inhibitors as single agents or in combinations. Antimicrobial. Agents Chemother. 36, 926–933. 50 Johnson, V. A., Merrill, D. P., Chou, T.-C. and Hirsch, M. S. (1992). Human immunodeficiency virus type 1 (HIV-1) inhibitory interactions between protease inhibitor Ro 31–8959 and zidovudine, 2′,3′-dideoxycytidine, or recombinant interferon-αA against zidSovudine-sensitive or -resistant HIV-1 ( in vitro. J. Infect. Dis. 166, 1143–1146. 51 Richman, D. D. (1993). Resistance of clinical isolates of HIV to antiretroviral agents. Antimicrob. Agents Chemother. 37, 1207–1213. 52 Mitsuya, H. and Broder, S. (1987). Strategies for antiviral therapy in AIDS. Nature 325(6107), 773–778. 53 Ono, K., Ogawawara, M., Iwata, Y. et al. (1986). Inhibition of reverse transcriptase activity by 2′,3′-dideoxythymidine 5′-triphosphate and its derivatives modified on the 3′ position. Biochem. Biophys. Res. Commun. 140, 498–507. 54 Larder, B. A., Coates, K. E. and Kemp, S. D. (1991). Zidovudine-resistant human immunodeficiency virus selected by passage in cell culture. J. Virol. 65, 5232–5236. 55 Larder, B. A., Darby, G. and Richman, D. D. (1989). HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 243, 1731–1734. 56 Richman, D. D., Grimes, J. M. and Lagakos, S. W. (1990). Effect of stage of disease and drug dose on zidovudine susceptibilities of isolates of human immunodeficiency virus. J. AIDS 3, 743–746. 57 Richman, D. D., Shih, C.-K., Lowy, I. et al. (1991). HIV-1 mutants resistant to non-nucleoside inhibitors of reverse transcriptase arise in tissue culture. Proc. Natl Acad. Sci. USA 88, 11241–11245. 58 Richman, D. D., Havlir, D., Corbeil, J. et al. (1994). Nevirapine resistance mutations of HIV-1 selected during therapy. J. Virol. 68, 1660–1666. 59 Kaplan, A. H., Michael, S. F., Wehbie, R. S. et al. (1994). Selection of multiple human immunodeficiency virus type 1 variants that encode viral proteases with decreased sensitivity to an inhibitor of the viral protease. Proc. Natl Acad. Sci. USA 91, 5597–5601. 60 Otto, M. J., Garber, S., Winslow, D. L. et al. (1993). In vitro isolation and identification of human immunodeficiency virus (HIV) variants with reduced sensitivity to C-2 symmetrical inhibitors of HIV type 1 protease. Proc. Natl Acad. Sci. USA 90, 7543–7547. 61 Ho, D. D., Toyoshima, T., Mo, H. et al. (1994). Characterization of human immunodeficiency virus type 1 variants with increased resistance to a C2-symmetric protease inhibitor. J. Virol. 68, 2016–2020. 62 Pillay, D., Smidt, M. L., Potts, K. E., Bryant, M. L. and Richman, D. D. (1994). In vitro selection of protease inhibitor resistant human immunodeficiency virus type 1 (HIV-1) strains. 34th Interscience Conference on Antimicrobial Agents and Chemotherapy Orlando, FL, October 4–7 (abstract). 63 El-Farrash, M. A., Kuroda, M. J., Kitazaki, T. et al. (1994). Generation and characterization of a human immunodeficiency virus type 1 (HIV-1) mutant resistant to an HIV-1 protease inhibitor. J. Virol. 68, 233–239. 64 Sardana, V. V., Schlabach, A. J., Graham, P. et al. (1994). Human immunodeficiency virus type 1 protease inhibitors: evaluation of resistance engendered by amino acid substitutions in the enzyme's substrate binding site. Biochemistry 33, 2004–2010. 65 Delfraissy, J. F., Sereni, D., Brun-Vézinet, F. et al. (1993). A phase I-II dose ranging study of the safety and activity of Ro 21–8959 (HIV-proteinase inhibitor) in previously zidovudine (ZDV) treated HIV-infected individuals. IXth International Conference on AIDS Berlin, June 6–11 (abstract). 66 Collier, A. C., Coombs, R. W., Timpone, J. et al. (1994). Comparative study of Ro 31–8959 and zidovudine (ZDV) vs. ZDV and zalcitabine (ddC) vs. Ro 31–8959, ZDV, and ddC. Tenth International Conference on AIDS Yokohama, Japan, August 7–12, (abstract). 67 Deutsch, P., Teppler, H., Squires, K. et al. (1994). Antiviral activity of L-735,524, an HIV protease inhibitor, in infected patients. 34th ICAAC, Orlando, FL, October, 1994, (abstract). 68 Kempf, D. (1994). Symmetry-based inhibitors of HIV protease: oral bioavailability and resistance emergence. Keystone Symposium on Molecular and Cellular Biology Sante Fe, N.M., March 5–11, (abstract). 69 Mimoto, T., Imai, J., Kisanuki, S. et al. (1992). Kynostatin (KNI)-227 and -272, highly potent anti-HIV agents: conformationally constrained tripetide inhibitors of HIV protease containing allophenyl-norstatine. Chem. Pharm. Bull. 40, 2251–2253. 70 Thaisrivongs, S. (1994). Structure-based design of non-peptide HIV protease inhibitors. 35th Annual Buffalo Medicinal Chemistry Symposium Buffalo, NY, May 22–25, (abstract). 71 Kalish, V. (1994). Lead optimization utilizing iterative protein structure-based drug design: potent, orally bioavailable HIV protease inhibitors. 35th Annual Buffalo Medicinal Chemistry Symposium Buffalo, NY, May 22–25, (abstract). 72 Tung, R. (1994). Design and optimization of potent, orally active HIV aspartyl protease inhibitors. VIth International Antiviral Symposium Nice, France, June 7–10, (abstract). Citing Literature Volume5, Issue1March 1995Pages 23-33 ReferencesRelatedInformation
Referência(s)