Copper-phthalocyanine stationary phases (Cu-PCS) for fullerenes separation in microcolumn liquid chromatography
1996; Wiley; Volume: 8; Issue: 1 Linguagem: Inglês
10.1002/(sici)1520-667x(1996)8
ISSN1520-667X
AutoresKiyokatsu Jinno, Chikayuki Kohrikawa, Yoshihiro Saito, Jun Haiginaka, Yutaka Saito, Masaki Mifune,
Tópico(s)Chemical Reaction Mechanisms
ResumoJournal of Microcolumn SeparationsVolume 8, Issue 1 p. 13-21 Copper-phthalocyanine stationary phases (Cu-PCS) for fullerenes separation in microcolumn liquid chromatography Kiyokatsu Jinno, Corresponding Author Kiyokatsu Jinno School of Materials Science, Toyohashi University of Technology, Toyohashi 441, JapanSchool of Materials Science, Toyohashi University of Technology, Toyohashi 441, JapanSearch for more papers by this authorChikayuki Kohrikawa, Chikayuki Kohrikawa School of Materials Science, Toyohashi University of Technology, Toyohashi 441, JapanSearch for more papers by this authorYoshihiro Saito, Yoshihiro Saito School of Materials Science, Toyohashi University of Technology, Toyohashi 441, JapanSearch for more papers by this authorJun Haiginaka, Jun Haiginaka Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663, JapanSearch for more papers by this authorYutaka Saito, Yutaka Saito Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700, JapanSearch for more papers by this authorMasaki Mifune, Masaki Mifune Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700, JapanSearch for more papers by this author Kiyokatsu Jinno, Corresponding Author Kiyokatsu Jinno School of Materials Science, Toyohashi University of Technology, Toyohashi 441, JapanSchool of Materials Science, Toyohashi University of Technology, Toyohashi 441, JapanSearch for more papers by this authorChikayuki Kohrikawa, Chikayuki Kohrikawa School of Materials Science, Toyohashi University of Technology, Toyohashi 441, JapanSearch for more papers by this authorYoshihiro Saito, Yoshihiro Saito School of Materials Science, Toyohashi University of Technology, Toyohashi 441, JapanSearch for more papers by this authorJun Haiginaka, Jun Haiginaka Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663, JapanSearch for more papers by this authorYutaka Saito, Yutaka Saito Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700, JapanSearch for more papers by this authorMasaki Mifune, Masaki Mifune Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700, JapanSearch for more papers by this author First published: 1996 https://doi.org/10.1002/(SICI)1520-667X(1996)8:1 3.0.CO;2-BCitations: 6AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Three copper-phthalocyanine stationary phases (Cu-PCS) were evaluated for fullerenes separation with microcolumn liquid chromatography. These phases offer two dominant interactions between fullerenes and the bonded moiety, solvophobic interaction, and π-π interaction. The former can be induced by the alkyl chains which are attached to the silica surface by the endcapping process, and the latter is the main target of these phases which should be induced by the phthalocyanine moiety. The different alkyl chain length of the endcapping agents such as ethanoyl, butyryl(butanoyl) and decanoyl made a big difference in performance for fullerenes separation, because longer chains disturb the direct π-π interaction between fullerenes and the phthalocyanine moiety, and induce smaller capability of molecular size and shape recognition. However, the appropriate alkyl chain length induces a higher possibility of the interaction between the solutes and phthalocyanine moiety because the chains can move to catch fullerenes on the phthalocyanine moiety. Temperature effect on retention reveals much clearer sight of the retention mechanism, since these phases produce unusual temperature dependency on retention where the retention and separation performance for fullerenes is enhanced with increasing temperature. © 1996 John Wiley & Sons, Inc. References 1 W. Kratschmer, K. Fostiropoulos, and D. R. Huffman, Chem. Phys. Lett. 170, 167 (1990). 10.1016/0009-2614(90)87109-5 Web of Science®Google Scholar 2 R. Taylor, J. R. Hare, A. K. Abdul-Sada, and H. W. Kroto, J. Chem. Soc. Chem. Commun. 1423 (1990). Google Scholar 3 R. D. Johnson, G. Meijer, and D. S. Bethune, J. Am. Chem. Soc. 112, 8983 (1990). 10.1021/ja00180a055 CASWeb of Science®Google Scholar 4 P. M. Allenmand, A. Koch, and F. Wudl, J. Am. Chem. Soc. 113, 1050 (1991). 10.1021/ja00003a053 Web of Science®Google Scholar 5 J. C. Fetzer, private communication. Google Scholar 6 J. C. Fetzer and E. J. Gallegos, Polycycl. Arom. Comp. 2, 245 (1992). 10.1080/10406639208048426 CASGoogle Scholar 7 M. Diach, R. L. Hettich, R. N. Compton, and G. Guiochon, Anal. Chem. 64, 2143 (1992). 10.1021/ac00042a020 PubMedWeb of Science®Google Scholar 8 R. C. Klute, H. C. Dorn, and H. M. McNair, J. Chromatogr. Sci. 30, 438 (1992). 10.1093/chromsci/30.11.438 CASWeb of Science®Google Scholar 9 K. Jinno, T. Uemura, H. Nagashima, and K. Itoh, Chromatographia 35, 38 (1993). 10.1007/BF02278554 CASWeb of Science®Google Scholar 10 K. Jinno, T. Uemura, H. Nagashima, and K. Itoh, HRC, 15, 627 (1992). 10.1002/jhrc.1240150916 CASWeb of Science®Google Scholar 11 K. Jinno, T. Uemura, H. Ohta, H. Nagashima, and K. Itoh, Chimica Oggi 12 (No. 9), 19 (1984). Google Scholar 12 K. Jinno, T. Uemura, H. Ohta, H. Nagashima, and K. Itoh, Anal. Chem. 65, 2650 (1993). 10.1021/ac00067a017 CASWeb of Science®Google Scholar 13 J. M. Hawkins, T. A. Lewis, S. D. Loren, A. Meyer, J. R. Heath, Y. Shibato, and R. J. Saykally, J. Org. Chem. 55, 6520 (1990). 10.1021/jo00313a009 Web of Science®Google Scholar 14 D. M. Cox, S. Behal, M. Disko, S. M. Gorun, M. G. Greaney, C. S. Hsu, E. B. Kollin, J. Miller, R. D. Robbins, R. D. Sherwood, and P. Tindall, J. Am. Chem. Soc. 113, 2940 (1991). 10.1021/ja00008a023 CASWeb of Science®Google Scholar 15 K. Jinno, K. Yamamoto, T. Ueda, H. Nagashima, and K. Itoh, J. Chromatogr. 594, 105 (1992). 10.1016/0021-9673(92)80317-N CASWeb of Science®Google Scholar 16 W. H. Pirkle and C. J. Welch, J. Org. Chem. 56, 6973 (1991). 10.1021/jo00025a006 CASWeb of Science®Google Scholar 17 C. J. Welch and W. H. Pirkle, J. Chromatogr. 609, 89 (1992). 10.1016/0021-9673(92)80152-K CASWeb of Science®Google Scholar 18 K. Cabrera, C. Wieland, and M. Schafer, J. Chromatogr. 644, 396 (1993). 10.1016/0021-9673(93)80725-N CASWeb of Science®Google Scholar 19 C. E. Kibbey, M. R. Savina, B. K. Parseghian, A. H. Francis, and M. E. Meyerhoff, Anal. Chem. 65, 3717 (1993). 10.1021/ac00072a028 CASWeb of Science®Google Scholar 20 K. Jinno, T. Uemura, J. Haginaka, and Y. Saito, J. Micro Column Sep. 4, 325 (1992). 10.1002/mcs.1220040406 Web of Science®Google Scholar 21 Y. Saito, M. Mifune, J. Oda, Y. Otsuki, M. Mitsuhashi, Y. Mori, A. H. Gassim, and J. Haginaka, Anal. Sci. 7, 805 (1991). 10.2116/analsci.7.805 CASWeb of Science®Google Scholar 22 R. S. Ruoff, D. S. Tse, R. Malhotra, and D. C. Lorents, J. Phys. Chem. 97, 3379 (1993). 10.1021/j100115a049 CASWeb of Science®Google Scholar 23 K. Jinno, T. Uemura, H. Ohta, H. Nagashima, and K. Itoh, Anal. Chem. 65, 2650 (1993). 10.1021/ac00067a017 CASWeb of Science®Google Scholar 24 H. Ohta, Y. Saito, K. Jinno, H. Nagashima, and K. Itoh, Chromatographia 39, 453 (1994). 10.1007/BF02278762 CASWeb of Science®Google Scholar Citing Literature Volume8, Issue11996Pages 13-21 ReferencesRelatedInformation
Referência(s)