Artigo Acesso aberto Revisado por pares

Calcium influx mediated by the Escherichia coli heat-stable enterotoxin B (STB).

1993; National Academy of Sciences; Volume: 90; Issue: 8 Linguagem: Inglês

10.1073/pnas.90.8.3202

ISSN

1091-6490

Autores

Lawrence A. Dreyfus, B A Harville, D E Howard, Rabia Shaban, Diane M. Beatty, Stephen J. Morris,

Tópico(s)

Lipid Membrane Structure and Behavior

Resumo

The heat-stable enterotoxin B (STB) of Escherichia coli is a 48-amino acid extracellular peptide that induces rapid fluid accumulation in animal intestinal models. Unlike other E. coli enterotoxins that elicit cAMP or cGMP responses in the gut [heat-labile toxin (LT) and heat-stable toxin A (STA), respectively], STB induces fluid loss by an undefined mechanism that is independent of cyclic nucleotide elevation. Here we studied the effects of STB on intracellular calcium concentration ([Ca2+]i), another known mediator of intestinal ion and fluid movement. Ca2+ and pH measurements were performed on different cell types including Madin-Darby canine kidney (MDCK), HT-29/C1 intestinal epithelial cells, and primary rat pituitary cells. Ca2+ and pH determinations were performed by simultaneous real-time fluorescence imaging at four emission wavelengths. This allowed dual imaging of the Ca(2+)- and pH-specific ratio dyes (indo-1 and SNARF-1, respectively). STB treatment induced a dose-dependent increase in [Ca2+]i with virtually no effect on internal pH in all of the cell types tested. STB-mediated [Ca2+]i elevation was not inhibited by drugs that block voltage-gated Ca2+ channels including nitrendipine, verapamil (L-type), omega-conotoxin (N-type), and Ni2+ (T-type). The increase in [Ca2+]i was dependent on a source of extracellular Ca2+ and was not affected by prior treatment of MDCK cells with thapsigargin or cyclopiazonic acid, agents that deplete and block internal Ca2+ stores. In contrast to these results, somatostatin and pertussis toxin pretreatment of MDCK cells completely blocked the STB-induced increase in [Ca2+]i. Taken together, these data suggest that STB opens a GTP-binding regulatory protein-linked receptor-operated Ca2+ channel in the plasma membrane. The nature of the STB-sensitive Ca2+ channel is presently under investigation.

Referência(s)