Formation of cis -Enediyne Complexes from Rhenium Alkynylcarbene Complexes
2002; American Chemical Society; Volume: 124; Issue: 11 Linguagem: Inglês
10.1021/ja011962o
ISSN1943-2984
AutoresCharles P. Casey, Stefan Kraft, Douglas R. Powell,
Tópico(s)Synthetic Organic Chemistry Methods
ResumoDimerization of the alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(3) (8) occurs at 100 degrees C to give a 1.2:1 mixture of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(3))=C(CH(3))C(triple bond)CTol] (10-Eand 10-Z), showing no intrinsic bias toward trans-enediyne complexes. The cyclopropyl-substituted alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CC(3)H(5) (11) dimerizes at 120 degrees C to give a 5:1 ratio of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)C(C(3)H(5))C=C(C(3)H(5))C(triple bond)CTol] (12-E and 12-Z); no ring expansion product was observed. This suggests that if intermediate A formed by a [1,1.5] Re shift and having carbene character at the remote alkynyl carbon is involved, then interaction of the neighboring Re with the carbene center greatly diminishes the carbene character as compared with that of free cyclopropyl carbenes. The tethered bis-(alkynylcarbene) complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(2)CH(2)CH(2)C(triple bond)CC(Tol)= Re(CO)(2)Cp (13) dimerizes rapidly at 12 degrees C to give the cyclic cis-enediyne complex [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(2)CH(2)CH(2))=CC(triple bond)CTol] (15). Attempted synthesis of the 1,8-disubstituted naphthalene derivative 1,8-[Cp(CO)(2)Re=C(Tol)C(triple bond)C](2)C(10)H(6) (16), in which the alkynylcarbene units are constrained to a parallel geometry, leads to dimerization to [Cp(CO)(2)Re](2)(eta(2),eta(2)-1,2-(tolylethynyl)acenaphthylene] (17). The very rapid dimerizations of both 13 and 16 provide compelling evidence against mechanisms involving cyclopropene intermediates. A mechanism is proposed which involves rate-determining addition of the carbene center of A to the remote alkynyl carbon of a second alkynylcarbene complex to generate vinyl carbene intermediate C, and rearrangement of C to the enediyne complex by a [1,1.5] Re shift.
Referência(s)