Artigo Revisado por pares

Relativ akkretive Operatoren und Approximation von Evolutionsgleichungen 2. Art. I

1975; Wiley; Volume: 66; Issue: 1 Linguagem: Alemão

10.1002/mana.19750660108

ISSN

1522-2616

Autores

Hans Grabmüller,

Tópico(s)

Advanced Numerical Methods in Computational Mathematics

Resumo

Mathematische NachrichtenVolume 66, Issue 1 p. 67-87 Article Relativ akkretive Operatoren und Approximation von Evolutionsgleichungen 2. Art. I Hans Grabmüller, Hans Grabmüller Fachbereich Mathematik der Technischen Hochschule D–6100 Darmstadt, Schloßgartenstraße 7Search for more papers by this author Hans Grabmüller, Hans Grabmüller Fachbereich Mathematik der Technischen Hochschule D–6100 Darmstadt, Schloßgartenstraße 7Search for more papers by this author First published: 1975 https://doi.org/10.1002/mana.19750660108Citations: 4AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Literatur 1 S. Agmon, Lectures on elliptic boundary value problems. Princeton, New Jersey 1965. 2 G. I. Barenblatt, I. Zheltov und P. Zheltov, I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24, 1286–1303 (1960). 3 G. I. Barenblatt, G. G. Chernyi, On moment relations on surfaces of discontinuity in dissipative media. J. Appl. Math. Mech. 27, 1205–1218 (1963). 4 F. E. Browder, On the spectral theory of elliptic differential operators, I. Math. Ann. 142, 22–130 (1961). 5 B. D. Coleman, H. Markovitz, W. Noll, Viscometric flows of non-Newtonian fluids. Berlin-Heidelberg-New York 1966. 6 A. Friedman, Partial differential equations. New York 1969. 7 S. Goldberg, Unbounded linear operators. New York 1966. 8 E. Hille, R. S. Phillips, Functional analysis and semi-groups. Providence, Rhode Island 1957. 9 T. Kato, Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19, 508–520 (1967). 10 T. Kato, Perturbation theory for linear operators. Berlin-Heidelberg-New York 1966. 11 P. D. Lax, A. N. Milgram, Parabolic equations. Contributions to the Theory of Partial Differential Equations. Ann. Math. Studies, no. 33: Princeton Univ. Press 1954, 167–190. 12 J. L. Mermin, An exponential limit formula for nonlinear semigroups. Trans. Am. math. Soc. 150, 469–476 (1970). 13 I. P. Natanson, Theorie der Funktionen einer reellen Veränderlichen. Berlin 1961. 14 R. E. Showalter, Pseudo-parabolic partial differential equations. Doctoral thesis. Urbana: University of Illinois 1968. 15 R. E. Showalter, Partial differential equations of Sobolev-Galpern type. Pacific J. Math. 31, 787–794 (1969). 16 R. E. Showalter, Local regularity of solutions of Sobolev-Galpern partial differential equations. Pacific J. Math. 34, 781–787 (1970). 17 R. E. Showalter, Well-posed problems for partial differential equations of order 2m + 1. SIAM J. Math. Anal. 1, 214–231 (1970). 18 R. E. Showalter, T. W. Ting, Pseudo-parabolic partial differential equations. SIAM J. Math. Anal. 1, 1–25 (1970). 19 A. E. Taylor, Introduction to functional analysis. New York 1958. 20 T. W. Ting, Certain non-steady flows of second-order fluids. Arch. Rat. Mech. Anal. 14, 1–26 (1963). 21 T. W. Ting, Parabolic and pseudo-parabolic partial differential equ. J. Math. Soc. Japan 21, 440–453 (1969). 22 K. Yosida, Functional analysis. Berlin-Heidelberg-New York 1968. Citing Literature Volume66, Issue11975Pages 67-87 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX