Hydroxylated Polybrominated Diphenyl Ethers and Bisphenol A in Pregnant Women and Their Matching Fetuses: Placental Transfer and Potential Risks
2010; American Chemical Society; Volume: 44; Issue: 13 Linguagem: Inglês
10.1021/es1002764
ISSN1520-5851
AutoresYi Wan, Kyungho Choi, Sunmi Kim, Kyunghee Ji, Hong Chang, Steve Wiseman, Paul D. Jones, Jong Seong Khim, Seok-Hwan Park, Jeongim Park, Michael Hon‐Wah Lam, John P. Giesy,
Tópico(s)Per- and polyfluoroalkyl substances research
ResumoHydroxylated polybrominated diphenyl ethers (OH-PBDEs) are suspected endocrine disruptors, which can pass through the mammalian placenta and accumulate in the human maternal-fetal-placental unit. However, little is known about mechanisms of placental transfer and the associated risk(s). Ten OH-PBDE congeners, bisphenol A (BPA), total 17beta-estradiol (E2), and total thyroxine (T4) were quantified in blood serum from 26 pregnant women and 28 matching fetuses, including three pairs of twins from South Korea. Only 6-OH-BDE-47, a naturally occurring OH-PBDE, was detected at relatively great concentrations (maternal serum: 17.5 +/- 26.3 pg/g ww, fetal cord blood serum: 30.2 +/- 27.1 pg/g ww), which suggests that exposure was related to diets among Korean women. Concentrations of 6-OH-BDE-47 in maternal and cord serum were positively correlated, with concentrations being significantly greater in cord blood serum. The placental transfer ratio between fetal and maternal blood serum for 6-OH-BDE-47 (F/M ratio: 1.4 +/- 1.1) was different than the observed placental transfer ratio of BPA and previously reported values for hydroxylated polychlorinated biphenyls (OH-PCBs). This result is possibly due to large affinities to T4 transport proteins. Lesser concentrations of E2 and T4 were detected in cord blood serum (E2: 4.7 +/- 2.2 ng/mL, T4: 8.5 +/- 1.7 microg/dL) compared to maternal blood serum (E2: 8.0 +/- 3.0 ng/mL, T4: 9.7 +/- 1.8 microg/dL). A major effect of OH-PBDE exposure might be a decrease in serum T4 concentrations. Potential risks associated with disruption of T4 transport to the developing fetus such as negative consequences for fetal neurological development should be considered in further studies.
Referência(s)