A Kinetic Study of the Horse-Radish Peroxidase-Catalyzed Oxidation of Iodide

1968; Wiley; Volume: 5; Issue: 1 Linguagem: Inglês

10.1111/j.1432-1033.1968.tb00347.x

ISSN

1432-1033

Autores

Fred Björkstén,

Tópico(s)

Analytical chemistry methods development

Resumo

European Journal of BiochemistryVolume 5, Issue 1 p. 133-142 Free Access A Kinetic Study of the Horse-Radish Peroxidase-Catalyzed Oxidation of Iodide F. Björkstén, F. Björkstén Valtion Seerumlaitos Mannerheimintie 166, Helsinki 28, FinlandSearch for more papers by this author F. Björkstén, F. Björkstén Valtion Seerumlaitos Mannerheimintie 166, Helsinki 28, FinlandSearch for more papers by this author First published: June 1968 https://doi.org/10.1111/j.1432-1033.1968.tb00347.xCitations: 28 AboutSectionsPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat Abstract Reaction steps in which H+ and I− are added to horse-radish peroxidase have been studied by examining the steady-state kinetics of the peroxidase-catalyzed oxidation of I−. For this purpose spectrophotometric methods for following the reaction were developed. Kinetic data were interpreted by extensions of methods proposed by Wong and Hanes in 1962 and Cleland in 1963. It is shown that H+ and I− are transferred to both ferriperoxidase (the free enzyme) and compound II in separate steps. Reaction with undissociated HI is not important. The ferriperoxidase-H+-I− complex is similar to complexes known to be produced in the presence of singly charged anions other than I−. Addition of both H+ and I− is required for the reduction of compound II to ferriperoxidase. The need for H+ brings support to George's suggestion made in 1953 that compound II contains a ferryl FeO2+ structure. Enzyme Peroxidase (EC 1.11.1.7) REFERENCES 1 Chance, B., Arch. Biochem. Biophys. 41 (1952) 404. CrossrefCASPubMedWeb of Science®Google Scholar 2 Chance, B., Arch. Biochem. Biophys. 41 (1952) 416. CrossrefCASPubMedWeb of Science®Google Scholar 3 George, P., Advan. Catalysis 4 (1952) 367. CrossrefCASWeb of Science®Google Scholar 4 George, P., Biochem. J. 54 (1953) 267. CrossrefCASPubMedWeb of Science®Google Scholar 5 George, P., Biochem. J. 55 (1953) 220. CrossrefCASPubMedWeb of Science®Google Scholar 6 Yonetani, T., J. Biol. Chem. 241 (1966) 2562. PubMedWeb of Science®Google Scholar 7 Brill, A. S., In Comprehensive Biochemistry (edited by M. Florkin and E. H. Stotz), Elsevier, Amsterdam 1966, Vol. 14, p. 447. Google Scholar 8 Paul, K. G., In The Enzymes (edited by P. D. Boyer, H. Lardy, and K. Myrbäck), Academic Press, New York 1963, Vol. 8, p. 227. Google Scholar 9 Cleland, W. W., Biochim. Biophys. Acta, 67 (1963) 188. CASPubMedWeb of Science®Google Scholar 10 George, P., J. Biol. Chem. 201 (1953) 427. CrossrefCASPubMedWeb of Science®Google Scholar 11 Ricard, J., and Nari, J., Biochim. Biophys. Acta, 132 (1967) 321. Google Scholar 12 Wittenberg, J. B., Noble, R. W., Wittenberg, B. A., Antonini, E., Brunori, M., and Wyman, J., J. Biol. Chem. 242 (1967) 626. CASPubMedWeb of Science®Google Scholar 13 Yamazaki, I., In Biological and Chemical Aspects of Oxygenases (edited by K. Bloch and O. Hayaishi), Maruzen, Tokyo 1966, p. 433. Google Scholar 14 Maeda, Y., and Morita, Y., Biochem. Biophys. Res. Commun. 29 (1967) 680. CrossrefCASPubMedWeb of Science®Google Scholar 15 Björkstén, F., Biochim. Biophys. Acta, 151 (1968) 309. Google Scholar 16 Yokota, K., and Yamazaki, I., Biochem. Biophys. Res. Commun. 18 (1965) 48. CrossrefCASPubMedWeb of Science®Google Scholar 17 Mann, P. J. G., Biochem. J. 24 (1931) 918. CrossrefGoogle Scholar 18 Willstätter, R., and Weber, H., Ann. Chem. 449 (1926) 173. Google Scholar 19 Yamazaki, I., Mason, H. S., and Piette, L., J. Biol. Chem. 235 (1960) 2444. CASPubMedWeb of Science®Google Scholar 20 Chance, B., Arch. Biochem. Biophys. 40 (1952) 153. CrossrefCASPubMedWeb of Science®Google Scholar 21 Dunford, H. B., and Alberty, R. A., Biochemistry, 6 (1967) 447. CrossrefGoogle Scholar 22 Maehly, A. C., Biochim. Biophys. Acta, 8 (1952) 1. CrossrefCASPubMedWeb of Science®Google Scholar 23 Maehly, A. C., Acta Chem. Scand. 12 (1958) 1247. CrossrefCASWeb of Science®Google Scholar 24 Bach, A., Chem. Ber. 37 (1904) 3785. CASGoogle Scholar 25 Bach, A., Chem. Ber. 40 (1907) 230. Wiley Online LibraryGoogle Scholar 26 Hosoya, T., and Morrison, M., J. Biol. Chem. 242 (1967) 2828. CASWeb of Science®Google Scholar 27 Hager, L. P., Morris, D. R., Brown, F. S., and Eberwein, H., J. Biol. Chem. 241 (1966) 1769. CrossrefCASPubMedWeb of Science®Google Scholar 28 Awtrey, A. D., and Connick, R. E., J. Am. Chem. Soc. 73 (1951) 1842. CrossrefCASWeb of Science®Google Scholar 29 Davies, M., and Gwynne, E., J. Am. Chem. Soc. 74 (1952) 2748. CrossrefCASWeb of Science®Google Scholar 30 Svehla, G., and Erdey, L., Microchem. J. 7 (1963) 206. CrossrefCASWeb of Science®Google Scholar 31 Klapper, M. H., and Hackett, D. P., Biochim. Biophys. Acta, 96 (1965) 272. CrossrefCASPubMedWeb of Science®Google Scholar 32 Keilin, D., and Hartree, E. F., Biochem. J. 49 (1951) 88. CrossrefCASPubMedWeb of Science®Google Scholar 33 Hosoya, T., J. Biochem. (Tokyo), 48 (1960) 375. Google Scholar 34 Paul, K. G., and Avi-Dor, Y., Acta Chem. Scand. 8 (1954) 649. CrossrefCASWeb of Science®Google Scholar 35 Rohrer, G. F., von Wartburg, J. P., and Aebi, H., Biochem. Z. 344 (1966) 492. Google Scholar 36 Yonetani, T., and Ray, G. S., J. Biol. Chem. 241 (1966) 700. CASPubMedWeb of Science®Google Scholar 37 Alberty, R. A., and Bloomfield, V., J. Biol. Chem. 238 (1963) 2804. CASPubMedWeb of Science®Google Scholar 38 Eigen, M., Naturwissenschaften, 50 (1963) 426. CrossrefCASWeb of Science®Google Scholar 39 Eigen, M., and Hammes, G. G., Advan. Enzymol. 25 (1963) 1. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar 40 Dixon, M., and Webb, E. C., Enzymes ( 2nd edition). Longmans, London 1964, p. 56. Google Scholar 41 George, P., Beetlestone, J., and Griffith, J. S., In Haematin Enzymes (edited by J. E. Falk, R. Lemberg, and R. K. Morton), Pergamon Press, Oxford 1961, Vol. 1, p. 105. CrossrefGoogle Scholar 42 Theorell, H., Arkiv Kemi, Mineral. Geol. 16A (1942) No. 3, p. 1. Google Scholar 43 Fridovich, I., J. Biol. Chem. 238 (1963) 3921. CASPubMedWeb of Science®Google Scholar 44 Watson, H. C., and Chance, B., In Hemes and Hemoproteins (edited by B. Chance, R. W. Estabrook, and T. Yonetani), Academic Press, New York 1966, p. 149. Google Scholar 45 Coval, M. L., and Taurog, A., J. Biol. Chem. 242 (1967) 5510. CASPubMedWeb of Science®Google Scholar 46 Greer, M. A., Kendall, J. W., and Smith, M., In The Thyroid Gland (edited by R. Pitt-Rivers, and W. R. Trotter), Butterworths, London 1964, Vol. 1, p. 357. Google Scholar 47 Yonetani, T., J. Biol. Chem. 240 (1965) 4509. CrossrefCASPubMedWeb of Science®Google Scholar 48 Chance, B., Arch. Biochem. 24 (1949) 410. CASPubMedWeb of Science®Google Scholar 49 Cotton, F. A., and Wilkinson, G., Advanced Inorganic Chemistry. Interscience, New York 1962, p. 139. Google Scholar 50 Alberty, R. A., and Hammes, G. G., J. Phys. Chem. 62 (1958) 154. CrossrefCASWeb of Science®Google Scholar 51 Wong, J. T.-F., and Hanes, C. S., Can. J. Biochem. Physiol. 40 (1962) 763. CASPubMedWeb of Science®Google Scholar Citing Literature Volume5, Issue1June 1968Pages 133-142 ReferencesRelatedInformation

Referência(s)