The Problem of Bounded Space Coordinates as a Problem of Hestenes

1965; Society for Industrial and Applied Mathematics; Volume: 3; Issue: 2 Linguagem: Inglês

10.1137/0303015

ISSN

2168-359X

Autores

T. Guinn,

Tópico(s)

Heat Transfer and Mathematical Modeling

Resumo

Next article The Problem of Bounded Space Coordinates as a Problem of HestenesT. GuinnT. Guinnhttps://doi.org/10.1137/0303015PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] R. V. Gamkrelidze, Optimal control processes for bounded phase coordinates, Izv. Akad. Nauk SSSR. Ser. Mat., 24 (1960), 315–356 MR0120438 Google Scholar[2] V. G. Boltyanskii˘, , R. V. Gamkrelidze and , L. S. Pontryagin, On the theory of optimal processes, Dokl. Akad. Nauk SSSR (N.S.), 110 (1956), 7–10 MR0084444 Google Scholar[3] R. V. Gamkrelidze, On the general theory of optimal processes, Dokl. Akad. Nauk SSSR, 123 (1958), 223–226 MR0123072 0090.30702 Google Scholar[4] V. G. Boltjanskii˘, The maximum principle in the theory of optimal processes, Dokl. Akad. Nauk SSSR, 119 (1958), 1070–1073 MR0120108 0081.34702 Google Scholar[5] L. S. Pontryagin, , V. G. Boltyanskii, , R. V. Gamkrelidze and , E. F. Mishchenko, The mathematical theory of optimal processes, Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt, Interscience Publishers John Wiley & Sons, Inc. New York-London, 1962viii+360 MR0166037 0102.32001 Google Scholar[6] V. G. Boltjanskii˘, , R. V. Gamkrelidze and , L. S. Pontryagin, Theory of optimal processes. I. The maximum principle, Izv. Akad. Nauk SSSR. Ser. Mat., 24 (1960), 3–42 MR0120437 Google Scholar[7] Leonard D. Berkovitz, On control problems with bounded state variables, J. Math. Anal. Appl., 5 (1962), 488–498 10.1016/0022-247X(62)90020-3 MR0141557 0116.08102 CrossrefGoogle Scholar[8] M. R. Hestenes, A general problem in the calculus of variations with applications to paths of least time, RM-100, The RAND Corporation, Santa Monica, California, see also ASTIA Document 112382. Google Scholar[9] M. R. Hestenes, Variational theory and optimal control theory, mimeographed lecture notes, University of California, Los Angeles, 1963 Google Scholar[10] Magnus R. Hestenes, On variational theory and optimal control theory, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965), 23–48 MR0184763 0151.12803 LinkGoogle Scholar[11] Gilbert A. Bliss, Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Ill., 1946ix+296 MR0017881 0063.00459 Google Scholar Next article FiguresRelatedReferencesCited byDetails A Survey of the Maximum Principles for Optimal Control Problems with State ConstraintsRichard F. Hartl, Suresh P. Sethi, and Raymond G. Vickson17 February 2012 | SIAM Review, Vol. 37, No. 2AbstractPDF (4218 KB)Necessary Conditions for Optimization Problems with Operatorial ConstraintsC. Vı⁁rsan18 July 2006 | SIAM Journal on Control, Vol. 8, No. 4AbstractPDF (2303 KB)A Class of Nonstandard Optimal Control Problems with Application to Nuclear Reactor EconomicsPaul Nelson, Jr. and Gale Young18 July 2006 | SIAM Journal on Control, Vol. 6, No. 2AbstractPDF (2085 KB)A Maximum Principle for Optimal Control Problems in which the Phase Space Constraint Set is ClosedJane Cullum18 July 2006 | SIAM Journal on Control, Vol. 4, No. 3AbstractPDF (1521 KB) Volume 3, Issue 2| 1965Journal of the Society for Industrial and Applied Mathematics Series A Control History Submitted:14 September 1964Published online:18 July 2006 InformationCopyright © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0303015Article page range:pp. 181-190ISSN (print):0887-4603ISSN (online):2168-359XPublisher:Society for Industrial and Applied Mathematics

Referência(s)