In situ microscopic cytometry enables noninvasive viability assessment of animal cells by measuring entropy states
2011; Wiley; Volume: 108; Issue: 12 Linguagem: Inglês
10.1002/bit.23252
ISSN1097-0290
AutoresPhilipp Wiedemann, Jean‐Sébastien Guez, Hans B. Wiegemann, Florian Egner, Juan Carlos Quintana, Diego Asanza-Maldonado, Marcos Filipaki, Jeff Wilkesman, Christian Schwiebert, Jean‐Philippe Cassar, Pascal Dhulster, Hajo Suhr,
Tópico(s)Viral Infectious Diseases and Gene Expression in Insects
ResumoCurrent state of the art to determine the viability of animal cell suspension cultures is based on sampling and subsequent counting using specific staining assays. We demonstrate for the first time a noninvasive in situ imaging cytometry capable of determining the statistics of a morphologic transition during cell death in suspension cultures. To this end, we measure morphometric inhomogeneity--defined as information entropy--in cell in situ micrographs. We found that the cells are partitioned into two discrete entropy states broadened by phenotypical variability. During the normal course of a culture or by inducing cell death, we observe the transition of cells between these states. As shown by comparison with ex situ diagnostics, the entropy transition happens before or while the cytoplasmatic membrane is loosing its ability to exclude charged dyes. Therefore, measurement of morphometric inhomogeneity constitutes a noninvasive assessment of viability in real time.
Referência(s)