Revisão Revisado por pares

Xylitol, an Energy Source for Intravenous Nutrition after Trauma

1985; Wiley; Volume: 9; Issue: 2 Linguagem: Inglês

10.1177/0148607185009002199

ISSN

1941-2444

Autores

Michael Georgieff, Lyle L. Moldawer, Bruce R. Bistrian, George L. Blackburn,

Tópico(s)

Childhood Cancer Survivors' Quality of Life

Resumo

Journal of Parenteral and Enteral NutritionVolume 9, Issue 2 p. 199-209 Journal Article Xylitol, an Energy Source for Intravenous Nutrition after Trauma Michael Georgieff M.D., Michael Georgieff M.D. Nutrition/Metabolism Laboratory, Cancer Research Institute, New England Deaconess Hospital, Harvard Medical School, Boston, and Massachusetts Institute of Technology, Cambridge, MassachusettsSearch for more papers by this authorLyle L. Moldawer, Lyle L. Moldawer Nutrition/Metabolism Laboratory, Cancer Research Institute, New England Deaconess Hospital, Harvard Medical School, Boston, and Massachusetts Institute of Technology, Cambridge, MassachusettsSearch for more papers by this authorBruce R. Bistrian M.D., PH.D., Bruce R. Bistrian M.D., PH.D. Nutrition/Metabolism Laboratory, Cancer Research Institute, New England Deaconess Hospital, Harvard Medical School, Boston, and Massachusetts Institute of Technology, Cambridge, MassachusettsSearch for more papers by this authorGeorge L. Blackburn M.D., PH.D., George L. Blackburn M.D., PH.D. Nutrition/Metabolism Laboratory, Cancer Research Institute, New England Deaconess Hospital, Harvard Medical School, Boston, and Massachusetts Institute of Technology, Cambridge, MassachusettsSearch for more papers by this author Michael Georgieff M.D., Michael Georgieff M.D. Nutrition/Metabolism Laboratory, Cancer Research Institute, New England Deaconess Hospital, Harvard Medical School, Boston, and Massachusetts Institute of Technology, Cambridge, MassachusettsSearch for more papers by this authorLyle L. Moldawer, Lyle L. Moldawer Nutrition/Metabolism Laboratory, Cancer Research Institute, New England Deaconess Hospital, Harvard Medical School, Boston, and Massachusetts Institute of Technology, Cambridge, MassachusettsSearch for more papers by this authorBruce R. Bistrian M.D., PH.D., Bruce R. Bistrian M.D., PH.D. Nutrition/Metabolism Laboratory, Cancer Research Institute, New England Deaconess Hospital, Harvard Medical School, Boston, and Massachusetts Institute of Technology, Cambridge, MassachusettsSearch for more papers by this authorGeorge L. Blackburn M.D., PH.D., George L. Blackburn M.D., PH.D. Nutrition/Metabolism Laboratory, Cancer Research Institute, New England Deaconess Hospital, Harvard Medical School, Boston, and Massachusetts Institute of Technology, Cambridge, MassachusettsSearch for more papers by this author First published: 01 March 1985 https://doi.org/10.1177/0148607185009002199Citations: 64AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1Cahill GF Jr: Ketosis. JPEN 5: 281–288, 1981 10.1177/0148607181005004281 Web of Science®Google Scholar 2Waterlow JC, Garlick PJ, Millward DJ: Protein Turnover in Mammalian Tissues and in the Whole Body. Elsevier, North-Holland, Publ., Amsterdam, 1978 Google Scholar 3Elwyn DH, Kinney JM, Jeevanandam M., et al: Influence of increasing carbohydrate intake on glucose kinetics in injured patients. Ann Surg 190: 117, 1979 10.1097/00000658-197907000-00023 PubMedWeb of Science®Google Scholar 4Robertson RP, Porte D. Jr: Adrenergic modulation of basal insulin secretion in man. Diabetes 22: 1–8, 1973 10.2337/diab.22.1.1 PubMedWeb of Science®Google Scholar 5Wilmore DW: Hormonal responses and their effects on metabolism. Surg Clin North Am 56: 999–1018, 1976 10.1016/S0039-6109(16)41029-7 PubMedWeb of Science®Google Scholar 6Allsop JR, Wolfe RR, Burke JF: Glucose kinetics and responsiveness to insulin in the rat injured by burn. Surg Gynecol Ubstet 147: 565–573, 1978 PubMedWeb of Science®Google Scholar 7Carpentier YA, Askanazi I., Elwyn DH, et al: Effects of hypercaloric infusion on lipid metabolism in injury and sepsis. J Trauma 19: 649, 1979 10.1097/00005373-197909000-00002 PubMedWeb of Science®Google Scholar 8Clowes GHA, Randall HT, Cha CJ: Amino acid and energy metabolism in septic and traumatized patients. JPEN 4: 195, 1980 10.1177/014860718000400225 Web of Science®Google Scholar 9Dietze G., Wicklmayr M., Hepp KD, et al: On gluconeogenesis of human liver: Accelerated hepatic glucose formation induced by increased precursor supply. Diabetologia 12: 555–561, 1976 10.1007/BF01220631 PubMedWeb of Science®Google Scholar 10Gerich JE, Lorenzi M., Bier DM, et al: Effects of physiologic levels of glucagon and growth hormone on human carbohydrate and lipid metabolism. J Clin Invest 57: 875–884, 1976 10.1172/JCI108364 PubMedWeb of Science®Google Scholar 11O'Keefe SJD, Moldawer LL, Young VR, et al: The influence of intravenous nutrition on protein dynamics following surgery. Metabolism 30: 1150–1158, 1981 10.1016/0026-0495(81)90034-2 PubMedWeb of Science®Google Scholar 12Jeejeebhoy KN, Bruce-Robertson A., Ho J., et al: The comparative effects of nutritional and hormonal factors on the synthesis of albumin, fibrinogen and transferrin. Ciba Foundation Symp 9: 217–247, 1972 Google Scholar 13Jeejeebhoy KN, Bruce-Robertson A., Ho J., et al: The effect of cortisol on the synthesis of rat plasma albumin, fibrinogen and transferrin. Biochem J 130: 533–538, 1972 10.1042/bj1300533 PubMedWeb of Science®Google Scholar 14Gross RL, Newberne PM: Role of nutrition in immunologic function. Physiol Rev 60: 188, 1980 PubMedWeb of Science®Google Scholar 15Waterlow JC, Jackson AA: Nutrition and protein turnover in man. Br Med Bull 37: 5–10, 1981 10.1093/oxfordjournals.bmb.a071676 PubMedWeb of Science®Google Scholar 16Newsholme EA, Start C.: Regulation in Metabolism. John Wiley and Sons, New York, 1976 Google Scholar 17Beisel WR, Wannemacher RW Gluconeogenesis, ureagenesis and ketogenesis during sepsis. JPEN 4: 277, 1980 10.1177/014860718000400307 Web of Science®Google Scholar 18Georgieff M. : Theorie und praxis der perioperativen trauma-adaptierten parenteralen naehrstoffzufuhr. Z Ernaehrungswiss 21: 279–298, 1982 10.1007/BF02020746 Web of Science®Google Scholar 19Georgieff M., Kattermann R., Geiger K., et al: Vergleich von xylit und glukose als energietraeger im rahmen der hypokalorischen postoperativen parenteralen ernaehrungstherapie. Infusionstherapie 2: 69–76, 1981 Google Scholar 20Blackburn GL, Flatt JP, Clowes GHA, et al: Protein sparing therapy during periods of starvation with sepsis or trauma. Ann Surg 177: 588–594, 1973 10.1097/00000658-197305000-00012 PubMedWeb of Science®Google Scholar 21Georgieff M., Lutz H.: Die bedeutung des fettstoffwechsels bei der ueberwindung eines traumas. Infusionstherapie 9: 28–34, 1982 Web of Science®Google Scholar 22Roth E., Funovics I., Muhlbacher F., et al: Metabolic disorders in severe abdominal sepsis: Glutamine deficiency in the skeletal muscle. Clin Nutr 1: 25, 1982 10.1016/0261-5614(82)90004-8 PubMedGoogle Scholar 23Long CL, Jeevanandam M., Kim BM, et al: Whole body protein synthesis and catabolism in septic man. Am J Clin Nutr 30: 1340, 1977 PubMedWeb of Science®Google Scholar 24Kelleher DL, Puinno PA, Fong BC, et al: Glucose and lactate kinetics in septic rats. Metabolism 31: 252, 1982 10.1016/0026-0495(82)90061-0 PubMedWeb of Science®Google Scholar 25Wannemacher RW, Pace JG, Beall FA, et al: Role of the liver in regulation of ketone body production during sepsis. J Clin Invest 64: 1565, 1979 10.1172/JCI109617 PubMedWeb of Science®Google Scholar 26Wannemacher RW, Kaminski MV Jr, Neufeld HA, et al: Protein-sparing therapy during pneumococcal infection in rhesus monkeys. JPEN 2: 507–518, 1978 10.1177/014860717800200402 PubMedWeb of Science®Google Scholar 27Wolfe RR, Allsop JR, Burke JF: Glucose metabolism in man: Responses to intravenous glucose infusion. Metabolism 28: 210–220, 1979 10.1016/0026-0495(79)90066-0 PubMedWeb of Science®Google Scholar 28Lang K.: Xylit, stoffwechsel und klinische verwendung. Klin Wochenschr 49: 233–245, 1971 10.1007/BF01485423 PubMedWeb of Science®Google Scholar 29Horecker BL, Lang K., Takagi Y.: Pentoses and Pentitols: International Symposium on Metabolism, Physiology, and Clinical Use. Springer Verlag, New York, 1969 10.1007/978-3-642-46191-0 Google Scholar 30Touster O.: Essential pentosuria and the glucuronate-xylulose pathway. Fed Proc 19: 977–985, 1960 PubMedWeb of Science®Google Scholar 31Baessler KH : Absorption, metabolism and tolerance of polyol sugar substitutes. Pharm Ther Dent 3: 85–93, 1978 Google Scholar 32Hollman S., Touster O.: Non-Glycolytic Pathways of Metabolism of Glucose. Academic Press, New York, 1964 Google Scholar 33Rognstad R., Wals P., Katz J.: Further evidence for the classical pentose phosphate cycle in the liver. Biochem J 208: 851–855, 1982 10.1042/bj2080851 PubMedWeb of Science®Google Scholar 34Wannemacher RW Jr, Beall FA, Canonico PG, et al: Glucose and alanine metabolism during bacterial infections in rats and rhesus monkeys. Metabolism 29: 201–212, 1980 10.1016/0026-0495(80)90061-X PubMedWeb of Science®Google Scholar 35Thompson WL, Wannemacher RW Jr: Effects of infection with diplococcus pneumoniae on synthesis of ribonucleic acids in rat liver. Biochem J 134: 79–87, 1973 10.1042/bj1340079 PubMedWeb of Science®Google Scholar 36Karnovsky ML : Metabolic basis of phagocytic activity. Physiol Rev 42: 143–168, 1962 PubMedWeb of Science®Google Scholar 37Beisel WR, Sawyer WD, Ryll ED, et al: Metabolic effects of intracellular infections in man. Ann Intern Med 67: 744–779, 1967 10.7326/0003-4819-67-4-744 PubMedWeb of Science®Google Scholar 38Havel RJ: Caloric homeostasis and disorders of fuel transport. N Engl J Med 287: 1186–1192, 1972 10.1056/NEJM197212072872307 PubMedWeb of Science®Google Scholar 39Ishida T., Chap Z., Chou J., et al: Differential effects of oral, peripheral intravenous, and intraportal glucose on hepatic glucose uptake and insulin and glucagon extraction in conscious dogs. J Clin Invest 72: 590–601, 1983 10.1172/JCI111007 PubMedWeb of Science®Google Scholar 40Georgieff M., Geiger K.: Trauma-adapted intravenous nutritional support. IN International Anesthesiology Clinics, European Advances in Intensive Care. Geiger K, (ed). Little, Brown and Company, Boston, 1983 Google Scholar 41Georgieff M., Haux P., Raute M., et al: Der einfluss unterschiedlischer infusionsregime auf die hormonelle und metabolische reaktion vor, waehrend und nach cholecystektomie. Infusionstherapie 10: 11–18, 1983 Web of Science®Google Scholar 42Sherwin RS, Shamoon H., Hendler R., et al: Epinephrine and the regulation of glucose metabolism: Effect of diabetes and hormonal interactions. Metabolism 29: 1146–1154, 1980 10.1016/0026-0495(80)90024-4 PubMedWeb of Science®Google Scholar 43Flatt JP, Blackburn GL: The metabolic fuel regulatory system: Implications for protein-sparing therapies during caloric deprivation and disease. Am J Clin Nutr 27: 175–187, 1974 PubMedWeb of Science®Google Scholar 44Askanazi J., Weissman C., Rosenbaum SH, et al: Nutrition and the respiratory system. Crit Care Med 10: 163–172, 1982 10.1097/00003246-198203000-00005 PubMedWeb of Science®Google Scholar 45Collins JP, Oxby CB, Hill GL: Intravenous amino acids and intravenous hyperalimentation as protein-sparing therapy after major surgery. Lancet 1: 788, 1978 10.1016/S0140-6736(78)92995-1 PubMedWeb of Science®Google Scholar 46Shenkin A., Wretlind A.: Parenteral nutrition. World Rev Nutr Diet 28: 1, 1978 10.1159/000400636 PubMedGoogle Scholar 47Baessler KH, Olbermann M.: Kuenstliche ernaehrung. IN Interne Intensivmedizin. Schoelmerich P, Schuster HP, Schonborn H, et al (eds). Stuttgart: Thieme, 1980, pp 85–104 Google Scholar 48Peter K., Georgieff M., Georgieff EM: Ernaehrung in der intensivmedizin. Intensivmed 13: 89, 1976 Google Scholar 49Wolfe RR, Durkot J., Allsop JR, et al: Glucose metabolism in severely burned patients. Metabolism 28: 1031–1039, 1979 10.1016/0026-0495(79)90007-6 PubMedWeb of Science®Google Scholar 50Georgieff M., Katterman R., Geiger K., et al: Zur Frage der notwendigkeit einer spezifischen postoperativen, totalen parenteralen ernaehrungstherapie nach unterschiedlichen intraabdominellen eingriffen. Infusionstherapie 8: 114–123, 1981 Web of Science®Google Scholar 51Mehnert H., Forster H., Geser CA: Clinical use of carbohydrates in parenteral nutrition. IN: Parenteral Nutrition, Meng CH, Laws DH (eds). Charles C Thomas, Springfield, IL, 1970, pp 112–138 Google Scholar 52Georgieff M., Katterman R., Geiger K., et al: Unterschiede im postoperativen stoffwechselverhalten bei prae-und postoperativem beginn der totalen parenteralen ernaehrung. I. Mitteilung. Z Ernaehrungswiss 18: 160–183, 1979 10.1007/BF02020598 Web of Science®Google Scholar 53deKalbermatten N., Ravassin E., Jequier E.: Comparison of glucose, fructose, sorbitol and xylitol utilization in man during insulin suppression. Diabetologia 13: 389, 1977 (abstract) Web of Science®Google Scholar 54Georgieff M., Katterman R., Geiger K., et al: Der postoperative stoffwechselunterschiede zwischen prae-und postoperativem beginn der totalen parenteralen ernaehrung. Anaesth Intensivther Notfallmed 15: 20–35, 1980 10.1055/s-2007-1005118 Google Scholar 55Woolfson AMJ, Heatley RV, Allison SP: Insulin to inhibit protein catabolism after injury. N Engl J Med 300: 14–17, 1979 10.1056/NEJM197901043000104 PubMedWeb of Science®Google Scholar 56Rothig HJ, Stiller N., Dahlmann B., et al: Insulin effect on proteolytic activities in rat skeletal muscle. Horm Metab Res 10: 101–104, 1978 10.1055/s-0028-1093452 PubMedWeb of Science®Google Scholar 57Loehlein D., Zick R.: Zuckeraustauschstoffe oder glucose bei der peripher-venoesen hypokalorischen ernaehrung. Infusionstherapie 8: 133, 1981 Google Scholar 58Georgieff M., Katterman R., Lutz H.: IN Hochkalorische Parenterale Ernaehrung, Mueller JM, Pichlmaier H (eds). Springer Verlag, New York, 1981, pp 79–90 10.1007/978-3-642-67816-5_9 Google Scholar 59Georgieff M., Geiger K., Bratsch H., et al: The influence of upper and lower abdominal surgery on postoperative liver enzyme changes and protein metabolism during total parenteral nutrition. IN Recent Advances in Clinical Nutrition, I. Howard A, Baird IMcL (eds). John Libbey and Company Ltd., New York, 1981, p 127 Google Scholar 60Johnson EE, Hedley-Whyte J.: Continuous positive pressure ventilation and portal flow in dogs with pulmonary edema. J Appl Physiol 33: 385–390, 1972 PubMedWeb of Science®Google Scholar 61Georgieff M., Georgieff E-M., Peter K.: Prae-und postoperative ernaehrung. Aktuelle Ernaehrungsmed 1: 14, 1976 Google Scholar 62Loehlein D. : Untersuchungen zum proteinsparenden effekt verschiedener konzepte der peripheren parenteralen ernaehurng. Z Ernaehrungswiss 20: 1–15, 1980 Google Scholar 63Bassler VKH : Die rolle der kohlenhydrate in der parenteralen ernaehrung. Parenterale Ernaehrung 10: 57–72, 1971 Google Scholar 64Brunzell JD : Use of fructose, xylitol or sorbitol as sweetener in diabetes mellitus. Diabetes Care 1: 223–230, 1978 10.2337/diacare.1.4.223 PubMedGoogle Scholar 65Georgieff M., Storz LW, Lutz H.: Die regulation des ketonkoerperspiegels vor und nach elektiv-chirurgischen eingriffen waehrend unterschiedlicher intravenoeser naehrstoffzufuhr. Z Ernaehrungswiss 21: 214–224, 1982 10.1007/BF02028814 Web of Science®Google Scholar 66de Kalbermatten N., Ravussin E., Maeder E., et al: Comparison of glucose, fructose, sorbitol, and xylitol utilization in humans during insulin suppression. Metabolism 29: 62–67, 1980 10.1016/0026-0495(80)90099-2 PubMedGoogle Scholar 67Pellaton M., Acheson K., Maeder E., et al: The comparative oxidation of glucose, fructose, sorbitol and xylitol in normal man. JPEN 2: 627–633, 1978 10.1177/014860717800200502 Web of Science®Google Scholar 68Froesch ER, Zapf J., Keller U., et al: Comparative study of the metabolism of U14C-fructose, U14C-sorbitol and U14C-xylitol in the normal and in the streptozotocin-diabetic rat. Eur J Clin Invest 2: 8–14, 1971 10.1111/j.1365-2362.1971.tb00562.x PubMedWeb of Science®Google Scholar 69Ackermann RH : Bestimmung des Xylitumsatzes unter der geburt und nach operationen bei parenteraler zufuhr. Infusionstherapie 7: 113–115, 1980 Web of Science®Google Scholar 70Liaw KY, Askanazi I., Michelsen CB, et al: Effect of postoperative nutrition on muscle high energy phosphates. Ann Surg 195: 12–18, 1982 10.1097/00000658-198201001-00002 PubMedWeb of Science®Google Scholar 71Georgieff M., Ackermann RH, Baessler KH, et al: Die vorteile von xylit gegenueber glukose als energietraeger im rahmen der fruhen postoperstiven parenteralen naehrstoffzufuhr. Z Ernaehrungswiss 21: 27–42, 1982 10.1007/BF02023038 Web of Science®Google Scholar 72Georgieff M. : Influence of posttraumatic nutrition in patient outcome. IN New Aspects of Clinical Nutrition, Kleinberger G, Deutsch E (eds). Proceedings of the Fourth Congress of the European Society of Parenteral and Enteral Nutrition, Vienna. Karger, Basel 1983, pp 128–138 Google Scholar 73Zakim D., Hermann RH: Fructose metabolism. II. Regulatory control to the triose level. Am J Clin Nutr 21: 315–319, 1968 PubMedWeb of Science®Google Scholar 74Zakim D., Hermann RH, Gordon WC: The coversion of glucose and fructose to fatty acids in the humans liver. Biochem Med 2: 427–437, 1969 10.1016/0006-2944(69)90045-3 Web of Science®Google Scholar 75Baessler KH, Stein G., Belzer W.: Xylitstoffwechsel und xylitresorption: Stoffwechseladaptation als ursache fuer resorptionsbeschleunigung. Biochem Z 346: 171–185, 1966 Google Scholar 76Forster H., Hoos J.: Carbohydrate induced increase in uric acid synthesis. Studies in human volunteers and in laboratory rats. Adv Exp Med Biol 76A: 519–528, 1977 PubMedGoogle Scholar 77Foerster H. : Energietraeger in der parenteralen ernaehrung: kohlenhydrate, feet, alkohol. Internist 19: 2–19, 1978 PubMedGoogle Scholar 78Baessler KH, Brinkrolf H.: Die rolle von oxalacetat bei der gesteigerten ketogenese und beim antiketogenen effekt. Z Ges Exp Med 156: 52–60, 1971 10.1007/BF02052976 Web of Science®Google Scholar 79Blair JB, Cook DE, Lardy HA: Influence of glucagon on the metabolism of xylitol and dihydroxyacetone in the isolated perfused rat liver. J Biol Chem 248: 3601–3607, 1973 PubMedWeb of Science®Google Scholar 80Ravussin E., Acheson KJ, de Kalbermatten N.: Substrate utilization using indirect calorimetry during xylitol or sorbitol perfusions. Am J Clin Nutr 32: 1–2, 1979 PubMedWeb of Science®Google Scholar 81Lusk G.: Animal calorimetry. Analysis of the oxidation of mixtures of carbohydrate and fat. J Biol Chem 59: 41–42, 1924 Google Scholar 82Touster O., Reynolds VH, Hutcheson RM: The reduction of L-xylulose to xylitol by guinea pig liver mitochondria. J Biol Chem 221: 697–709, 1960 PubMedGoogle Scholar 83Maekinen KK : Biochemical principles of the use of xylitol in medicine and nutrition with special consideration of dental aspects. Experientia Suppl 30, Birkhaeuse Verlag, Basel, 1978 10.1007/978-3-0348-5757-4 Google Scholar 84Maekinen KK : Clinical nutrition: xylitol as a sucrose substitute: relation to dental caries. Nutr Rev 39: 368–371, 1981 Google Scholar 85Pitkanen E., Sohlstrom K.: Increased excretion of xylitol after administration of gluconolactone and ethanol in man. Am Med Exp Fenn 47: 143–147, 1968 Google Scholar 86Baessler KH, Toussaint W., Stein G.: Xylit-verwertung bei fruehgeborenen, saeuglingen, kindern und erwachsenen kinetik der elimination aus dem blut. Klin Wochenschr 14: 212–215, 1966 10.1007/BF01746552 Web of Science®Google Scholar 87Sato J., Wang YM, van Eys J.: Metabolism of xylitol and glucose in rats bearing hepatocellular carcinomas. Cancer Research 41: 3192–3199, 1981. PubMedWeb of Science®Google Scholar 88Baessler KH: In Metabolism, Physiology and Clinical Use of Pentoses and Pentitols, Horecker BL, Lang K, Takagi Y (eds). 1969, pp 190–196 10.1007/978-3-642-46191-0_15 Google Scholar 89Muller F., Strack E., Kuhfahl E., et al: Der stoffwechsel von xylit bei normalen und alloxandiabetischen tieren. Z Ges Exp Med 142: 238–245, 1967 Google Scholar 90Winegard AI, Shaw WN: Glucuronic acid pathway activity in adipose tissue. Am J Physiol 2061: 165–168, 1964 Google Scholar 91Kuhfahl E.: Der Einflub von monosacchariden und polyalkoholen auf den stoffwechsel unveresterter fettsaeuren des epididymalen fettgewebes normaler und diabetischer ratten. Acta Biol Med Germ 21: 711–722, 1968 PubMedWeb of Science®Google Scholar 92Birnesser H., Reinauer H., Hollmann S.: Comparative study of enzyme activities degrading sorbitol, ribitol, xylitol and gluconate in guinea pig tissues. Diabetologia 9: 30–33, 1973 10.1007/BF01225997 PubMedWeb of Science®Google Scholar 93Wang MC, Meng HC: Xylitol metabolism in extrahepatic tissues. Z Ernahrungswiss 11: 8–16, 1971 Google Scholar 94Optiz K.: IN Metabolism, Physiology and Clinical Use of Pentoses and Pentitols, Horecher BL, Lang K, Tagaki Y (eds). Springer Verlag, New York, 1969, pp 238–245 10.1007/978-3-642-46191-0_23 Google Scholar 95Baessler KH : Die rolle der kohlenhydrate in der parenteralen ernaehrung. Z Ernahrungswiss 57: 22–27, 1971. Google Scholar 96Kaiser W., Stoecker K., Heuckenkamp PU: Human erythrocyte phosphoribosylpyrophosphate content and “generation” during a constant rate infusion of xylitol. Advan Exp Med Biol 41: 479–482, 1976 Google Scholar 97Bassler KH, Reimold WV: Lactatbildang aus zuckern und zucker alkoholen in erythrocyten. Klin Wochenschr 43: 169–176, 1965 10.1007/BF01484510 PubMedWeb of Science®Google Scholar 98Asakura T., Adachi K., Minakami S., et al: Non glucolytic sugar metabolism in human erythrocytes. J Biochem 62: 184–193, 1967 10.1093/oxfordjournals.jbchem.a128647 PubMedWeb of Science®Google Scholar 99Baessler KH : Verhandlungen aerztlicher gesellschaften. International symposium on metabolism, physiology and clinical use of pentoses and pentitols (Hakone, Japan). Klin Wochenschr 46: 279–280, 1968 Google Scholar 100Hollmann S. : Trennung, reinigung und eigenschaften der mitochondrialen xylit-dehydrogenase zu der meerschweinchenleber. Hoppe-Seylers. Z Physiol Chem 317: 193–198, 1959 10.1515/bchm2.1959.317.1.193 Web of Science®Google Scholar 101Wang YM, van Eys J.: Nutritional significance of fructose and sugar alcohols. Ann Rev Nutr 1: 437–475, 1981 10.1146/annurev.nu.01.070181.002253 Web of Science®Google Scholar 102Touster O.: Metabolism and physiological effects of the polyols (alditols). IN Physiological Effects of Food Carbohydrates. Jeanes A, Hodge J (eds). American Chemical Society, Washington, DC, 1975, pp 123–134 10.1021/bk-1975-0015.ch007 Google Scholar 103Hollmann VS, Reinauer H.: Stoffwechsel der Pentosen und pentitole. Z Ernahrungswiss 11: 1–7, 1971 Google Scholar 104Baessler KH, Prellwitz W.: Insulin und Verteilungsraum von xylit bei eviszerierten ratten. Klin Wochenschr 42: 94–100, 1964 10.1007/BF01478659 PubMedWeb of Science®Google Scholar 105Berg G., Bickel H., Matzkies F.: Bilanz und Stoffwechselverhalten von Fruktose, Xylit und Glukose sowie deren mischungen bei Gesunden wahrend sechsstundiger parenteraler Ernahrung. Dtsch Med Wochenschr 98: 602–610, 1973 10.1055/s-0028-1106867 PubMedWeb of Science®Google Scholar 106Bickel H., Bunte H., Coats DA, et al: Die Verwertung parenteral verabreichter Kohlenhydrate in der postoperativen Phase. Dtsch Med Wochenschr 98: 809–813, 1973 10.1055/s-0028-1106911 PubMedWeb of Science®Google Scholar 107Black PR, Brooks DC, Bessey PQ, et al: Mechanisms of insulin resistance following injury. Ann Surg 196: 420–433, 1982 10.1097/00000658-198210000-00005 PubMedWeb of Science®Google Scholar 108Spitz IM, Rubenstein AH, Bersohn I., et al: Metabolism of xylitol in healthy subjects and patients with renal disease. Metabolism 19: 24–34, 1970 10.1016/0026-0495(70)90114-9 PubMedWeb of Science®Google Scholar 109Brunzell JD : Use of fructose, sorbitol, or xylitol as a sweetener in diabetes mellitus. J Am Diet Assoc 73: 499–506, 1978 PubMedWeb of Science®Google Scholar 110Mueller HR, Geser CA, Bonjour JP: Effects of oral xylitol administration on carbohydrate and lipid metabolism in normal subjects. Infusionstherapie 2: 247–251, 1975 Google Scholar 111Hassinger W., Sauer G., Cordes U., et al: The effects of equal caloric amounts of xylitol, sucrose and starch on insulin requirements and blood glucose levels in insulin-dependent diabetics. Diabetologia 21: 37–40, 1981 10.1007/BF03216221 PubMedWeb of Science®Google Scholar 112Egberts EH, Mueller PH: Kohlenhydratinfusion bei internistischen erkrankungen. Eine vergleichende studie bei stoffwechselgesunden, leberkranken und diabetischen patienten. Infusionstherapie 9: 166–185, 1982. Web of Science®Google Scholar 113Turner RC, Schneeloch B., Nabarro JDN: Biphasic insulin secretory response to intravenous xylitol and glucose in normal, diabetic and obese subjects. J Clin Endocrinol 33: 301–307, 1971 10.1210/jcem-33-2-301 Web of Science®Google Scholar 114Matzkies VF : Charakteristische stoffwechselwirkungen von glucose, fructose, sorbit, xylit und deren: mischungen bei intravenoeser dauerinfusion. Z Ernahrungswiss 13: 113–131, 1974 10.1007/BF02021371 PubMedGoogle Scholar 115Matzkies F. : Untersuchungen zur pharmakokinetik von kohlenhydraten als grundlage ihrer anwendung zur parenteralen ernaehrung. Z Ernahrungswiss 14: 184–216, 1975 10.1007/BF02021198 PubMedWeb of Science®Google Scholar 116Foerster H., Heller L., Hellmund U.: Stoffwechseluntersuchungen bei kontinuierlicher daurerinfusion von glucose, fructose und xylit ueber 48 studen. Dtsch Med Wochenschr 30: 1723–1729, 1974 10.1055/s-0028-1108038 Google Scholar 117Gruenert A., Doelp R., und Ahnefeld FW: Sorbit und xylit in der postoperativen infusionstherapie: Dosierungsgrenzen und infusionsdauer. Dtsch Med Wochenschr 104: 1075–1080, 1979 10.1055/s-0028-1129041 PubMedGoogle Scholar 118Berg G., Matzkies F., Heid H., et al: Wirkungen einer kohlenhydratkombinationsloesung auf den stoffwechsel bei gleichzeitiger applikation von aminosaeuren. Z Ernaehrungswiss 14: 163–174, 1975 10.1007/BF02021196 Web of Science®Google Scholar 119Yamagata S., Goto Y., Ohneda A., et al: Clinical effects of xylitol on carbohydrate and lipid metabolism in diabetes. Lancet 2: 918–921, 1965 10.1016/S0140-6736(65)92900-4 PubMedWeb of Science®Google Scholar 120Defronzo RA : Regulation of glucose, lipid, and amino acid metabolism in normal healthy subjects. IN New Aspects of Clinical Nutrition, Kleinberger G, Duetsch E (eds). Karger, Basel, 1983, pp 169–210 Google Scholar 121Matzkies F., Grabner W., Scharrer H., et al: Insulin secretion after long-term infusion of xylitol. Horm Metab Res 5: 221, 1973 10.1055/s-0028-1096729 PubMedWeb of Science®Google Scholar 122Cuthbertson DP: Post-shock metabolic response. Lancet 1: 433–437, 1942 10.1016/S0140-6736(00)79605-X Google Scholar 123Ross BH, Hems R., Krebs HA: The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem J 102: 942–951, 1967 10.1042/bj1020942 PubMedGoogle Scholar 124Froesch ER, Zapf J., Keller U., et al: Comparative study of the metabolism of U14C-fructose, U14C-sorbitol and U14C-xylitol in the normal and in the streptozotocin-diabetic rat. Eur J Clin Invest 2: 8–14, 1971 10.1111/j.1365-2362.1971.tb00562.x PubMedWeb of Science®Google Scholar 125Woods HF, Krebs HA: Xylitol metabolism in the isolated perfused rat liver. Biochem J 134: 437–443, 1973 10.1042/bj1340437 PubMedWeb of Science®Google Scholar 126Keller U., Froesch ER: Vergleichende untersuchungen ueber den Stoffwechsel von Xylit, Sorbit und Fruktose bein Menschen. Schweiz Med Wochenschr 102: 1017–1022, 1972 PubMedWeb of Science®Google Scholar 127Foerster H., Meyer E., Ziege M.: Hepatische glykogensynthese in Abhaengigkeit von der blutglucosekonzentration bei narkotisierten ratten. Klin Wochenschr 50: 478–480, 1972 10.1007/BF01487605 PubMedWeb of Science®Google Scholar 128Dong FM, Hartman WJ, Wekell MM: Effects of dietary xylitol and redox state and gluconeogenesis in the rat liver. J Nutr 110 : 1274–1284, 1979 PubMedWeb of Science®Google Scholar 129Felber JP, Renold AE, Zahnd GR: The comparative metabolism of glucose, fructose, galactose and sorbitol in normal subjects and in disease states. Mod Probl Paedit 4: 467–489, 1959 Google Scholar 130Zimmermann HG, Gerlach E.: Stimulation of myocardial adenine biosynthesis by pentoses and pentitols. Pfluegers Arch 376: 223–227, 1978 10.1007/BF00584954 Web of Science®Google Scholar 131Ylikahri RH, Leino T.: Metabolic interactions of xylitol and ethanol in healthy males. Metabolism 28: 25–29, 1979 10.1016/0026-0495(79)90164-1 PubMedWeb of Science®Google Scholar 132Randle RJ, Garland RB, Hales LN, Newsholme EA: The glucose fatty-acid cycle; its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785–789, 1963 10.1016/S0140-6736(63)91500-9 PubMedGoogle Scholar 133Poso AR: Shuttles for translocation of NADH in isolated liver cells from fed rats during oxidation of xylitol. Acta Chem Scand B 33: 93–99, 1979 10.3891/acta.chem.scand.33b-0093 Web of Science®Google Scholar 134Opitz K.: Ueber den einfluss von zuckern, zuckeralkoholen und verwandten substanzen auf die fettmobilisierung. Naunyn-Schmiedebergs Arch Pharmak Exp Path 255: 192–199, 1966 10.1007/BF00543212 Web of Science®Google Scholar 135Petrich V Ch, Reinauer H., Hollmann S.: Vergleichende aktivitaestsmessungen der enzyme des glucuronsaeure-xylulose-zyklus in der leber, dem epididymalen fettgewebe der ratte, in einem Morris-hepatom und einer fibrocyten-kultur. Z Klin Chem Klin Biochem 10: 355–358, 1972 Google Scholar 136Baessler KH, Dreiss G.: Antiketogene wirkung von xylit bei alloxandiabetischen ratten. Klin Wochenschr 41: 593–595, 1963 10.1007/BF01487412 PubMedWeb of Science®Google Scholar 137Hamalainen MM, Makinen KK: Metabolism of glucose, fructose and xylitol in normal and streptozotocin-diabetic rats. J Nutr 112: 1369–1378, 1982 PubMedWeb of Science®Google Scholar 138Jakob A., Williamson JR, Asakura T.: Xylitol metabolism in perfused rat liver. J Biol Chem 246: 7623–7631, 1971 PubMedWeb of Science®Google Scholar 139Moldawer LL, O'Keefe JD, Bothe A. Jr, et al: In vivo demonstration of nitrogen-sparing mechanisms for glucose and amino acids in the injured rat. Metabolism 29: 173–179, 1980 10.1016/0026-0495(80)90143-2 PubMedWeb of Science®Google Scholar 140Duke JH, Jorgensen SB, Broell JR, et al: Contribution of protein to caloric expenditure following injury. Surgery 68: 168–174, 1970 PubMedWeb of Science®Google Scholar 141Williamson JR, Jakob A., Scholz R.: Energy cost of gluconeogenesis in rat liver. Metabolism 20: 13–26, 1971 10.1016/0026-0495(71)90056-4 PubMedWeb of Science®Google Scholar 142Makinen KK : Xylitol and oral health. Adv Food Res 25: 137–158, 1979 10.1016/S0065-2628(08)60236-0 PubMedGoogle Scholar 143Makinen KK, Virtanen KK: Effects of 4.5 year use of xylitol and sorbitol on plague. J Dental Res 57: 441–446, 1978 10.1177/00220345780570030401 Web of Science®Google Scholar 144Scheinin A, Makinen KK (eds): Turku sugar studies: I-XXI. Acta Odont Scand 33:(suppl 70): 1–348, 1975 10.3109/00016357509004620 PubMedGoogle Scholar 145Matzkies VF : Charakteristiche stoffwechselwirkungen von glucose, fructose, sorbit, xylit und deren mischungen bei intravenoeser dauerinfusion. Z Ernahrungswiss 21: 113–140, 1974 10.1007/BF02021371 Google Scholar 146Mueller PH, Kleber M., Becke F., et al: Kohlenhydratinfusion bei internistischen erkrankungen. Eine vergleichende studie bei stoffwechselgesunden, leberkranken und diabetischen patienten. Infusiontherapie 9: 112–116, 1982 Google Scholar 147Prestele H., Horback L., Malchow H.: Kohlenhydratinfusion bei internistischen erkrankungen. Eine vergleichende studie bei stoffwechselgesunden, leberbranken und diabetischen patienten. VI. Infusion eines glukose/xylit-gemisches (Verhaeltnis 1:1) uber 48 stunden. Infusionstherapie 9: 92–96, 1982 Web of Science®Google Scholar 148Ladefoged K., Berthelsen P., Brockner-Nielsen J., et al: Fructose, xylitol and glucose in total parenteral nutrition. Intensive Care Med 8: 19–23, 1982 10.1007/BF01686849 PubMedWeb of Science®Google Scholar 149Berger W., Goeschke H., Moppert J., et al: Insulin concentrations in portal venous and peripheral venous blood in man following administration of glucose, galactose, xylitol and tolbutamide. Horm Metab Res 5: 4–8, 1973 10.1055/s-0028-1093991 PubMedWeb of Science®Google Scholar 150Folttmann CH, Reinauer H.: Utilisation von maltose und eines gemisches von maltose mit fruktose und xylit bei parenteraler zufuhr. Infusionstherapie 6: 84–89, 1979 Google Scholar 151Coats DA: Long term parenteral nutrition. Z Ernahrungswiss 9: 401–408, 1969 10.1007/BF02021521 PubMedWeb of Science®Google Scholar 152Schumer W. : Adverse effects of xylitol in parenteral alimentation. Metabolism 20: 345–347, 1971 10.1016/0026-0495(71)90096-5 PubMedWeb of Science®Google Scholar 153Truhaut R., Coquet B, Fouillet, et al: Sub-acute toxicity of xylitol in rats; absence of hepatotoxicity. Toxicology 8: 79–85, 1977 10.1016/0300-483X(77)90025-7 PubMedWeb of Science®Google Scholar Citing Literature Volume9, Issue2March 1985Pages 199-209 ReferencesRelatedInformation

Referência(s)