Revisão Acesso aberto

In vivo function of class I myosins

2000; Wiley; Volume: 47; Issue: 3 Linguagem: Inglês

10.1002/1097-0169(200011)47

ISSN

1097-0169

Autores

Nir Osherov, Gregory S. May,

Tópico(s)

Fungal and yeast genetics research

Resumo

Cell MotilityVolume 47, Issue 3 p. 163-173 ReviewFree Access In vivo function of class I myosins Nir Osherov, Nir Osherov Division of Pathology and Laboratory Medicine, University of Texas M. D. Anderson Cancer Center, HoustonSearch for more papers by this authorGregory S. May, Corresponding Author Gregory S. May [email protected] Division of Pathology and Laboratory Medicine, University of Texas M. D. Anderson Cancer Center, HoustonDivision of Pathology and Laboratory Medicine, Box 54, University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030Search for more papers by this author Nir Osherov, Nir Osherov Division of Pathology and Laboratory Medicine, University of Texas M. D. Anderson Cancer Center, HoustonSearch for more papers by this authorGregory S. May, Corresponding Author Gregory S. May [email protected] Division of Pathology and Laboratory Medicine, University of Texas M. D. Anderson Cancer Center, HoustonDivision of Pathology and Laboratory Medicine, Box 54, University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030Search for more papers by this author First published: 25 October 2000 https://doi.org/10.1002/1097-0169(200011)47:3 3.0.CO;2-UCitations: 18AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL REFERENCES Albanesi JP, Fujisaki H, Korn ED. 1985. Kinetic model for the molecular basis of the contractile activity of Acanthamoeba myosins IA and IB. J Biol Chem 260: 11174– 11179. Anderson BL, Boldogh I, Evangelista M, Boone C, Greene LA, Pon LA. 1998. The Src homology domain 3 (SH3) of a yeast type I myosin, Myo5p, binds to verprolin and is required for targeting to sites of action polarization. J Cell Biol 141: 1357– 13570. Baines IC, Brzeska H, Korn ED. 1992. Differential localization of Acanthamoeba myosin I isoforms. J Cell Biol 119: 1193– 1203. Baines IC, Corigliano Murphy A, Korn ED. 1995. Quantification and Localization of phosphorylated myosin I isoforms in Acanthamoeba castellanii. J Cell Biol 130: 591– 603. Barylko B, Binns D.D, Albanesi J.P. 2000. Regulations of the enzymatic and motor activities of myosin I. Bioch Biophys Acta 1946: 23– 35. Brzeska H, Lynch TJ, Martin B, Korn ED. 1989. The localization and sequence of the phosphorylation sites of Acanthamoeba myosin I. An improved method for locating the phosphorylated amino acid. J Biol Chem 264: 19340– 19348. Brzeska H, Martin BM, Korn ED. 1996. The catalytic domain of Acanthamoeba myosin I heavy chain kinase: identification and characterization following tryptic cleavage of the native enzyme. J Biol Chem 271: 27049– 27055. Brzeska H, Liu X, Korn ED, May GS, Yamashita R. 1999. The essential role of Aspergillus nidulans myosin I may not require actin-dependent Mg2+ ATPase activity. Mol Biol Cell Abstract supplements, American Society for Cell Biology annual meeting suppl 10: 161a, 933. Collins K, Sellers JR, Matsudaira P. 1990. Calmodulin dissociation regulates brush border myosin I (110-kD-calmodulin) mechanochemical activity in-vitro J Cell Biol 110: 1137– 1147. Coluccio LM. 1997. Myosin I. Am J Physiol 273: C347– C359 Coluccio LM, Geeves MA. 1999. Transient kinetic analysis of the 130-kDa Myosin I (MYR-1 gene product) from rat liver. J Biol Chem 274: 21575– 21580. Conzelman KA, Mooseker MS. 1987. The 110-kD protein-calmodulin complex of the intestinal microvillus is an actin-activated MgATPase. J Cell Biol 105: 313– 324. Dai J, Ting-Beall HP, Hochmuth RM, Sheetz MP, Titus MA. 1999. Myosin I contributes to the generation of resting cortical tension. Biophys J 77: 1168– 1176. Daniels RH, Bokoch GM. 1999. p21-activated protein kinase: a crucial component of morphological signaling? Trends Biochem Sci 24: 350– 355. Doberstein SK, Pollard TD. 1992. Localization and specificity of the phospholipid and actin binding sites on the tail of Acanthamoeba myosin IC. J Cell Biol 117: 1241– 1249. Doberstein SK, Baines IC, Wiegand G, Korn ED, Pollard TD. 1993. Inhibition of contractile vacuole function in vivo by antibodies against myosin I. Nature 365: 841– 843. Durrbach A, Collins K, Matsudaira P, Louvard D, Coudrier E. 1996. Brush border myosin I truncated in the motor domain impairs the distribution and the function of endocytic compartments in a hepatoma cell line. Proc Natl Acad Sci USA 93: 7053– 7058. Durrbach A, Raposo G, Tenza D, Louvard D, Coudrier E. 2000. Truncated Brush Border Myosin I affects membrane traffic in polarized epithelial cells. Traffic 1: 411– 424. Evangelista M, Klebl BM, Tong AH, Webb BA, Leeuw T, Leberer E, Whiteway M, Thomas DY, Boone C. 2000. A role for myosin I in actin assembly through interactions with Vrp1p, Bee1p and the Arp 2/3 complex. J Cell Biol 148: 353– 362. Fukui Y, Lynch TJ, Brzeska H, Korn ED. 1989. Myosin I is located at the leading edges of locomoting Dictyostelium amoebae. Nature 341: 328–331. Geli MI, Riezman H. 1996. Role of type I myosins in receptor mediated endocytosis in yeast. Science 272: 533– 535. Goodson HV, Anderson BL, Warrick HM, Pon LA, Spudich JA. 1996. Synthetic lethality screen identifies a novel yeast myosin I gene (myo5): myosin I proteins are required for polarization of the actin cytoskeleton. J Cell Biol 133: 1277– 1291. Hall A. 1998. Rho GTPases and the actin cytoskeleton. Science 279: 509– 514. Hasson T, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y, Yee AG, Mooseker MS, Corey DP. 1997. Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137: 1287– 1307. Jontes JD, Milligan RA. 1997. Brush border myosin-I structure and ADP-dependent conformational changes revealed by cryoelectron microscopy and image analysis. J Cell Biol 139: 683– 693. Jontes JD, Milligan RA, Pollard TD, Ostap EM. 1997. Kinetic characterization of brush border myosin-I ATPase. Proc Natl Acad Sci USA 94: 14332– 14337. Jontes JD, Ostap EM, Pollard TD, Milligan RA. 1998. Three-dimensional structure of Acanthamoeba castellanii myosin IB determined by cryoelectron microscopy of decorated actin filaments. J Cell Biol 141: 155– 162. Jung G, Hammer JA. 1990. Generation and characterization of Dictyostelium cell deficient in a myosin I heavy chain isoform J Cell Biol 110: 1955– 1964. Jung G, Fukui Y, Martin B, Hammer JA. 1993. Sequence, expression pattern, intracellular localization and targeted disruption of the Dictyostelium myosin ID heavy chain isoform. J Biol Chem 268: 14981– 14990. Jung G, Wu X, Hammer JA. 1996. Dictyostelium mutants lacking multiple classic myosin I isoforms reveal combinations of shared and distinct functions. J Cell Biol 133: 305– 323. Jung G, Wu X, Hammer JA. 1999. Myosin I, Arp 2/3, CapZ and a 116 kDa leucine rich repeat (LLR) protein are present in a complex critical for the formation of actin rich extensions. Mol Biol Cell Abstractements, American Society for Cell Biology annual meeting suppl 10: 6a. Lechler T, Shevchenko A, Li R. 2000. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J Cell Biol 148: 363– 373. Lee SF, Cote GP. 1993. Isolation and characterization of three Dictyostelium myosin I isozymes. J Biol Chem 268: 20923– 20929. Lee SF, Egelhoff TT, Mahasneh A, Cote GP. 1996. Cloning and characterization of a Dictyostelium myosin I heavy chain kinase activated by CdC42 and Rac. J Biol Chem 271: 27044– 27048. Lee WL, Ostap EM, Zot HG, Pollard TD. 1999. Organization and ligand binding properties of the tail of Acanthamoeba myosin-IA. Identification of an actin-binding site in the basic (tail homology-1) domain. J Biol Chem 274: 35159– 35171. Lynch TJ, Brzeska H, Miyata H, Korn ED. 1989. Purification and characterization of a third isoform of myosin I from A. castellanii. J Biol Chem 264: 19333– 19339. Maruta H, Korn ED. 1977. Acanthamoeba cofactor protein is a heavy chain kinase required for actin activation of the Mg2+-ATPase activity of Acanthamoeba myosin I. J Biol Chem 252: 8329– 8332. Matsudaira PT, Burgess DR. 1979. Identification and organization of the components in the isolated microvillus cytoskeleton. J Cell Biol 83: 667– 673. McGoldrick CA, Gruver C, May GS. 1995. MyoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. J Cell Biol 128: 577– 587. Morita YS, Jung G, Hammer JA, Fukui Y. 1996. Localization of Dictyostelium myoB and myoD to filopodia and cell-cell contact sites using isoform specific antibodies. Eur J Cell Biol 71: 371– 379. Novak KD, Titus MA. 1997. Myosin I overexpression impairs cell migration. J Cell Biol 136: 633– 647. Novak KD, Titus MA. 1998. The myosin I SH3 domain and TEDS rule phosphorylation site are required for in vivo function. Mol Biol Cell 9: 75– 88. Novak KD, Peterson MD, Reedy MC, Titus MA. 1995. Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis. J Cell Biol 131: 1205– 1221. Osherov N, Yamashita RA, Chung YS, May GS. 1998. Structural requirements for in vivo myosin I function in Aspergillus nidulans. J Biol Chem 273: 27017– 27025. Ostap EM, Pollard TD. 1996a. Biochemical kinetic characterization of the Acanthamoeba myosin I ATPase. J Cell Biol 132: 1053– 1060. Ostap EM, Pollard TD. 1996b. Overlapping functions of myosin I isoforms? J Cell Biol 133: 221– 224. Pollard TD, Korn ED. 1973. Acanthamoeba myosin I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem 248: 4682– 4690. Ruppert C, Godel J, Muller RT, Kroschewski R, Reinhard J, Bahler M. 1995. Localization of the rat myosin I molecules myr1 and myr2 and in vivo targeting of their tail domains. J Cell Sci 108: 3775– 3786. Schwarz EC, Neuhaus EM, Kistler C, Henkel AW, Soldati T. 2000. Dictyostelium myosin IK is involved in the maintenance of cortical tension and affects motility and phagocytosis. J Cell Sc 113: 621– 633. Stouffler HE, Bahler M. 1998. The ATPase activity of Myr3, a rat myosin I, is allosterically inhibited by its own tail domain and by Ca2+ binding to its light chain calmodulin. J Biol Chem 273: 14605– 14611. Stouffler HE, Honnert U, Bauer CA, Hofer D, Schwarz H, Muller RT, Drenckhahn D, Bahler M. 1998. Targeting of the myosin-I myr3 to intercellular adherens type junctions induced by dominant active Cdc42 in HeLa Cells. J Cell Sci 111: 2779– 2788. Svitkina TM, Borisy GG. 1999. Progress in protrusion: the tell-tale scar. Trends Biochem Sci 24: 432– 436. Titus MA, Wessels D, Spudich JA, Soll D. 1993. The unconventional myosin encoded by the myoA gene plays a role in Dictyostelium motility. Mol Biol Cell 4: 233– 246. Titus MA, Novak KD, Hanes GP, Urioste AS. 1995. Molecular genetic analysis of myoF, a new Dictyostelium myosin I gene. Biophys J 68: 1525– 1555. Veigel C, Coluccio LM, Jontes JD, Sparrow JC, Milligan RA, Molloy JE. 1999. The motor protein of myosin-I produces its working stroke in two steps. Nature 398: 530– 533. Wang FS, Wolenski JS, Cheney RE, Mooseker MS, Jay DG. 1996. Function of myosin-V in filopodial extension of neuronal growth cones. Science 273: 660– 663. Wang ZY, Wang F, Sellers JR, Korn ED, Hammer JA. 1998. Analysis of the regulatory phosphorylation site in Acanthamoeba myosin IC by using site-directed mutagenesis. Proc Natl Acad Sci USA 95: 15200– 15205. Wessels D, Murray J, Jung G, Hammer JA, Soll DR. 1991. Myosin IB null mutants of Dictyostelium exhibit abnormalities in motility. Cell Motil Cytoskeleton 20: 301– 315. Wu C, Lytvyn V, Thomas DY, Leberer E. 1997. The phosphorylation site for Ste20p like protein kinases is essential for the function of myosin I in yeast. J Biol Chem 272: 30623– 30626. Wu X, Jung G, Hammer JA. 2000. Functions of unconventional myosins. Curr Opin Cell Biol 12: 42– 51. Xu P, Zot AS, Zot HG. 1995. Identification of Acan 125 as a myosin-I-binding protein present with myosin-I on cellular organelles of Acanthamoeba. J Biol Chem 270: 25316– 25319. Xu P, Michelhill Ki, Kobe B, Kemp BE, Zot HG. 1997. The myosin I binding protein Acan 125 binds the SH3 domain and belongs to the superfamily of leucine-rich repeat proteins. Proc Natl Acad Sci USA 94: 3685– 3690. Yamashita RA, May GS. 1998. Constitutive activation of endocytosis by mutation of myoA, the myosin I gene of Aspergillus nidulans J Biol Chem 273: 14644– 14648. Yamashita RA, Osherov N, May GS. 2000. Localization of wild type and mutant class I myosin proteins in Aspergillus nidulans using GFP-fusion proteins. Cell Motil Cytoskeleton 45: 163– 172. Zot HG, Doberstein SK, Pollard TD. 1992. Myosin I moves actin filaments on a phospholipid substrate: implications for membrane targeting. J Cell Biol 116: 367– 376. Citing Literature Volume47, Issue3November 2000Pages 163-173 ReferencesRelatedInformation

Referência(s)