Artigo Revisado por pares

Demographic Genetic Analyses of the American Beech ( Fagus grandifolra Ehrh.). Genetic Variations of Seed Populations in Maryland

1998; Wiley; Volume: 13; Issue: 2-3 Linguagem: Inglês

10.1111/j.1442-1984.1998.tb00255.x

ISSN

1442-1984

Autores

Keiko Kitamura, J.G. O’Neill, DENNIS F. WIGHAM, SGOICHI KAWANO,

Tópico(s)

Genetic and Environmental Crop Studies

Resumo

Plant Species BiologyVolume 13, Issue 2-3 p. 147-154 Demographic Genetic Analyses of the American Beech (Fagus grandifolra Ehrh.). Genetic Variations of Seed Populations in Maryland KEIKO KITAMURAI, KEIKO KITAMURAI Forestry and Forest Products Research institute, Department of Agriculture, Forestry and Fisheries, Tsukuba, ibaraki 305-8687, JapanSearch for more papers by this authorJAY O'NEILL, JAY O'NEILL Smithsonian Environmental Research Center, P. 0. Box 28, Edgewater, Maryland, 2 1037-0028, U.S.A.Search for more papers by this authorDENNIS F. WIGHAM, DENNIS F. WIGHAM Smithsonian Environmental Research Center, P. 0. Box 28, Edgewater, Maryland, 2 1037-0028, U.S.A.Search for more papers by this authorSGOICHI KAWANO, SGOICHI KAWANO Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, JapanSearch for more papers by this author KEIKO KITAMURAI, KEIKO KITAMURAI Forestry and Forest Products Research institute, Department of Agriculture, Forestry and Fisheries, Tsukuba, ibaraki 305-8687, JapanSearch for more papers by this authorJAY O'NEILL, JAY O'NEILL Smithsonian Environmental Research Center, P. 0. Box 28, Edgewater, Maryland, 2 1037-0028, U.S.A.Search for more papers by this authorDENNIS F. WIGHAM, DENNIS F. WIGHAM Smithsonian Environmental Research Center, P. 0. Box 28, Edgewater, Maryland, 2 1037-0028, U.S.A.Search for more papers by this authorSGOICHI KAWANO, SGOICHI KAWANO Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, JapanSearch for more papers by this author First published: 30 March 2005 https://doi.org/10.1111/j.1442-1984.1998.tb00255.xCitations: 6AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Reference Alvarez-Buylla, E.R. and Garay, A.A. 1994. Population genetic structure of Cecropia obtusifolia, a tropical pioneer tree species. Evolution 48: 437–453. 10.1111/j.1558-5646.1994.tb01322.x PubMedWeb of Science®Google Scholar Alvarez-Buylla, E.R., Chaos, A., Pinero, D. and Garay, A.A. 1996. Demographic genetics of a pioneer tropical tree species: Patch dynamics, seed dispersal, and seed banks. Evolution 50: 1155–1166. 10.1111/j.1558-5646.1996.tb02356.x PubMedWeb of Science®Google Scholar Boshier, D.H., Chase, M.R. and Bawa, K.S. 1995. Population genetics of Cordia alliodora (Boraginaceae), a neotropical tree. 3. Gene flow, neighborhood, and population substructure. Am. J. Bot. 82: 484–490. 10.1002/j.1537-2197.1995.tb15668.x Web of Science®Google Scholar Brown, A.H.D. 1989. Genetic characterization of plant mating systems. In: A.H.D. Brown, M.T. Clegg, A.L. Kahler and B.S. Weir, (eds.), Plant Population Genetics, Breeding, and Genetic Resources, 145–162. Sinauer Associates Inc., Sunderland . Google Scholar Coates, D.J. and Sokolowski, R.E.S. 1992. The mating system and patterns of genetic variation in Banksia cuneata A.S. George, Proteaceae. Heredity 69: 11–20. 10.1038/hdy.1992.89 Web of Science®Google Scholar Cottrell, J.E. and White, I.M.S. 1995. The use of isozyme genetic markers to estimate the rate of outcrossing in a Sitka spruce (Picea sitchensis (Bong.) Carr.) seed orchard in Scotland. New For. 10: 111–122. Google Scholar Davis, B.J. 1964. Disk electrophoresis II: method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121: 404–427. 10.1111/j.1749-6632.1964.tb14213.x CASPubMedWeb of Science®Google Scholar Epperson, B.K. 1989. Spatial patterns of genetic variation within plant populations. In: A.H.D. Brown, M.T. Clegg, A.L. Kahler and B.S. Weir, (eds.), Plant Population Genetics, Breeding, and Genetic Resources, 229–253. Sinauer Associates Inc., Sunderland . Web of Science®Google Scholar Epperson, B.K. and Allard, R.W. 1989. Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics 121: 369–377. 10.1093/genetics/121.2.369 CASPubMedWeb of Science®Google Scholar Epperson, B.K. and Alvarez-Buylla, E.R. 1997. Limited seed dispersal and genetic structure in life stages of Cecropia obtusifofia. Evolution 51: 275–282. 10.1111/j.1558-5646.1997.tb02409.x PubMedWeb of Science®Google Scholar Fowells, H.A. 1965. American beech (Fagus grandifola Ehrh.). In: Silvics of Forest Trees of the United States. Agriculture Handbook No. 271, 172–180. U.S. Dept. Agric. Forest Service. Google Scholar Geburek, T. and Tripp-Knowles, P. 1994. Genetic architecture in bur oak, Quercus macrocarpa (Fagaceae), inferred by means of spatial autocorrelation analysis. Plant. Syst. Evol. 189: 63–74. 10.1007/BF00937578 Web of Science®Google Scholar Gregorius, H.-R., Krauhausen, J. and Muller-Starck, G. 1986. Spatial and temporal genetic differentiation among the seed in a stand of Fagus sylvatica L. Heredity 57: 255–262. 10.1038/hdy.1986.116 Web of Science®Google Scholar Harnrick, J.L. and Godt, M.J.W. 1989. Allozyme diversity in plant species. In: A.H.D. Brown, M.T. Clegg, A.L. Kahler and B.S. Weir, (eds.), Plant Population Genetics, Breeding, and Genetic Resources, 43–63. Sinauer Associates Inc., Sunderland . Google Scholar Harnrick, J.L. and Godt, M.J.W. 1997. Effects of life history traits on genetic diversity in plant species. In: J. Silvertown, M. Franco and J.L. Harper, (eds.), Plant Life Histories—Ecology, Phylogeny and Evolution, 102–118. Cambridge Univ. Press, Cambridge . Google Scholar Harnrick, J.L. and Nason, J.D. 1996. Consequences of dispersal in Plants. In: O.E. Rhodes, R.K. Chesser and M.H. Smith, (eds.), Population Dynamics in Ecological Space and Time, 203–236. The Univ. Chicago Press, Chicago . Google Scholar Kawano, S. and Kitamura, K. 1997. Demographic genetics of Japanese beech, Fagus crenata, at the Ogawa Forest Preserve, Ibaraki, Central Honshu, Japan. 111. Population dynamics and genetic substructuring within metapopulation. Plant Species Biol. 12: 157–177. 10.1111/j.1442-1984.1997.tb00164.x Google Scholar Kitamura, K. and Kawano, S. 1996. Demographic genetics of tree metapopulation A case study of Fagus crenata and Fagus grandifolia. Jpn. J. Ecol. 46: 179–183 (in.Japanese). Google Scholar Kitamura, K., Shimada, K., Nakashima, K. and Kawano, S. 1997a. Demographic genetics of Japanese beech, Fagus crenata, at the Ogawa Forest Preserve, Ibaraki, Central Honshu, Japan. I. Spatial genetic substructuring in local populations. Plant Species Biol. 12: 107–135. 10.1111/j.1442-1984.1997.tb00162.x Google Scholar Kitamura, K., Shimada, K., Nakashima, K. and Kawano, S. 1997. Demographic genetics of Japanese beech, Fagus crenata, at the Ogawa Forest Preserve, Ibaraki, Central Honshu, Japan. II. Genetic substructuring among size-classes in local populations. Plant Species Biol. 12: 137–155. 10.1111/j.1442-1984.1997.tb00163.x Google Scholar Kjaer, E.D. and Suangtho, V. 1995. Outcrossing rate of teak (Tectona grandis L.). Silvae Genet. 44: 175–177. Web of Science®Google Scholar Knowles, P. 1991. Spatial genetic structure within two natural stands of black spruce (Picea mariana (Mill.) B.S. P.). Silvae Genet. 40: 13–19. Web of Science®Google Scholar Leonardi, S., Raddi, S. and Borghetti, M. 1996. Spatial autocorrelation of allozyme traits in a Norway spruce (Picea abies) population. Can. J. For. Res. 26: 63–71. 10.1139/x26-007 CASWeb of Science®Google Scholar Leonardi, S. and Menozzi, P. 1996. Spatial structure of genetic variability in natural stands of Fagus sylvatica L. (beech) in Italy. Heredity 77: 359–368. 10.1038/hdy.1996.154 Web of Science®Google Scholar Lewandowski, A., Burczyk, J. and Mejnartowicz, L. 1991. Genetic structure and the mating system in an old stand of Polish larch. Silvae Genet. 40: 75–79. Web of Science®Google Scholar Linhart, Y.B., Mitton, J.B., Sturgeon, K.B. and Davis, M.L. 1981. Genetic variation in space and time in a population of ponderosa pine. Heredity 46: 407–426. 10.1038/hdy.1981.49 Web of Science®Google Scholar Merzeau, D., Di Giusto, F., Comps, B., Thiebaut, B., Letouzey, J. and Cuguen, J. 1989. Genetic control of isozyme systems and heterogeneity of pollen contribution in beech (Fagus sylvatica L.). Silvae Genet. 38: 195–201. Web of Science®Google Scholar Merzeau, D., Comps, B., Thiebaut, B., Cuguen, J. and Letouzey, J. 1994. Genetic structure of natural stands of Fagus sylvatica L. (beech). Heredity 72: 269–277. 10.1038/hdy.1994.37 Web of Science®Google Scholar Morgante, M., Vendramin, G.G. and Rossi, P. 1991. Effects of stand density on outcrossing rate in two Norway spruce (Picea abies) populations. Can. J. Bot. 69: 2704–2708. 10.1139/b91-339 Web of Science®Google Scholar Muona, O. 1989. Population genetics in forest tree improvement. In: A.H.D. Brown, M.T. Clegg, A.L. Kahler and B.S. Weir, (eds.), Plant Population Genetics, Breeding, and Genetic Resources, 282–298. Sinauer Associates Inc., Sunderland . Google Scholar Nei, M. and Roychoudhury, A.K. 1974. Sampling variances of heterozygosity and genetic distance. Genetics 76: 379–390. 10.1093/genetics/76.2.379 CASPubMedWeb of Science®Google Scholar Orstein, L. 1964. Disk electrophoresis I: background and theory. Ann. N.Y. Acad. Sci. 121: 321–349. 10.1111/j.1749-6632.1964.tb14207.x CASPubMedGoogle Scholar Perry, D.J. and Knowles, P. 1990. Evidence of high self-fertilization in natural populations of eastern white cedar (Thuja occidentalis). Can. J. Bot. 68: 663–668. 10.1139/b90-086 Web of Science®Google Scholar Perry, D.J. and Knowles, P. 1991. Spatial genetic structure with-in three sugar maple (Acer saccharurn Marsh.) stands. Heredity 66: 137–142. 10.1038/hdy.1991.17 Web of Science®Google Scholar Ritland, K. 1990. A series of FORTRAN computer programs for estimating plant mating systems. J. Hered. 81: 235–237. 10.1093/oxfordjournals.jhered.a110982 Web of Science®Google Scholar Ritland, K. and Jain, S.K. 1981. A model for the estimation of outcrossing rate and gene frequencies based on n independent loci. Heredity 47: 37–54. 10.1038/hdy.1981.57 Web of Science®Google Scholar Rossi, P., Vendramin, G.G. and Giannini, R. 1996. Estimation of mating system parameters in two Italian natural populations of Fagus sylvatica. Can. J. For. Res. 26: 1187–1192. 10.1139/x26-132 Web of Science®Google Scholar Shapcott, A. 1995. The spatial genetic structure in natural populations of the Australian temperate rainforest tree Atherosperma moschafum (Labill.) (Monirniaceae). Heredity 74: 28–38. 10.1038/hdy.1995.4 Web of Science®Google Scholar Shiraishi, S. 1988. Inheritance of isozyme variations in Japanese Black Pine, Pinus thunbergii Parl. Silvae Genet. 37: 93–100. Google Scholar Sokal, R.R. and Rohlf, F.J. 1995. Biometry, 3rd ed. 887 pp. W.H. Freeman and Company, New York . Google Scholar Xie, C.Y. and Knowles, P. 1991. Spatial genetic sub structure within natural populations of jack pine (Pinus banksiana). Can. J. Bot 69: 547–551. 10.1139/b91-074 Web of Science®Google Scholar Young, A.G. and Merriam, H.G. 1994. Effects of forest fragmentation on the spatial genetic structure of Acersaccharum Marsh. (sugar maple) populations. Heredity 72: 201–208. 10.1038/hdy.1994.27 Web of Science®Google Scholar Citing Literature Volume13, Issue2-3December 1998Pages 147-154 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX