Review Article: Permeabilized Cell Models for the Study of Granule Transport in Pigment Cells
1987; Wiley; Volume: 1; Issue: 2 Linguagem: Inglês
10.1111/j.1600-0749.1987.tb00391.x
ISSN1600-0749
Autores Tópico(s)Skin and Cellular Biology Research
ResumoPigment Cell ResearchVolume 1, Issue 2 p. 65-68 Review Article: Permeabilized Cell Models for the Study of Granule Transport in Pigment Cells MANFRED SCHLIWA, MANFRED SCHLIWA Department of Zoology, University of California, Berkeley, California 94720Search for more papers by this author MANFRED SCHLIWA, MANFRED SCHLIWA Department of Zoology, University of California, Berkeley, California 94720Search for more papers by this author First published: September 1987 https://doi.org/10.1111/j.1600-0749.1987.tb00391.xCitations: 9AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES Allen, R.D., N.S. Allen, and J. Travis (1981) Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil., 1, 292–302. 10.1002/cm.970010303 Google Scholar Allen, R.D., D.G. Weiss, J.H. Hayden, T.D. Brown, H. Fujiwake, and M. Simpson (1985) Gliding movement of and bidirectional movement along single native microtubules from the squid axoplasm: Evidence for an active role of microtubules in cytoplasmic transport. J. Cell Biol., 100, 1736–1752. 10.1083/jcb.100.5.1736 PubMedWeb of Science®Google Scholar Bagnara, J.T., and M.E. Hadley (1973) Chromatophores and Color Change. The Comparative Physiology of Animal Pigmentation. Prentice-Hall, Englewood Cliffs . Google Scholar Beckerle, M.C., and K.R. Porter (1982) Inhibitors of dynein activity block intracellular transport in erythrophores. Nature, 295, 701–703. 10.1038/295701a0 CASPubMedWeb of Science®Google Scholar Brady, S.T., R.J. Lasek, and R.D. Allen (1982) Fast axonal transport in extruded axoplasm from the squid giant axon. Scinece, 218, 1129–1131. 10.1126/science.6183745 PubMedWeb of Science®Google Scholar Brady, S.T. (1985) A novel brain ATPase with properties expected for the axonal transport motor. Nature, 317, 73–75. 10.1038/317073a0 CASPubMedWeb of Science®Google Scholar Brady, S.T. (1987) Fast axonal transport in isolated axoplasm from the squid giant axon. In: Axonal Transport. R.S. Smith and M.A. Bisby eds. Alan R. Liss, New York , pp. 113–137. Web of Science®Google Scholar Brokaw, C.J. (1961) Movement and nucleoside polyphosphate activity of isolated flagella from Polytoma uvella. Exp. Cell Res., 22, 151–162. 10.1016/0014-4827(61)90094-5 CASWeb of Science®Google Scholar Clarke, T.G., and J.L. Rosenbaum (1982) Pigment particle translocation in detergent-permeabilized melanophores of Fundulus heteroclitus. Proc. Natl. Acad. Sci. U.S.A., 79, 4655–4659. 10.1073/pnas.79.15.4655 PubMedWeb of Science®Google Scholar Clarke, T.G., and J.T. Rosenbaum (1984) Energy requirements for pigment aggregation in Fundulus melanophores. Cell Motil., 4, 431–441. 10.1002/cm.970040604 PubMedWeb of Science®Google Scholar Euteneuer, U., M.P. Koonce, K. Pfister, and M. Schliwa (1987) Identification and initial characterization of a high molecular weight ATPase from Reticulomyxa, a possible organelle motor. J. Cell Biol., in press (abstr.). Google Scholar Geschwind, I.I., J.M. Horowitz, G.M. Mikuckis, and R.D. Dewey (1977) Iontophoretic release of cyclic AMP and dispersion of melanosomes within a single melanophore. J. Cell Biol., 74, 928–943. 10.1083/jcb.74.3.928 CASPubMedWeb of Science®Google Scholar Green, L. (1968) Mechanisms of movement of granules in melanocytes of Fundulud heteroclitus (L.). Proc. Natl. Acad. Sci. U.S.A., 59, 1179–1186. 10.1073/pnas.59.4.1179 PubMedWeb of Science®Google Scholar Haydem, J.H., and R.D. Allen (1984) Detection of single microtubules in living cells. Particle transport can occur in both directions along the same microtubule. J. Cell Biol., 99, 1785–1793. 10.1083/jcb.99.5.1785 PubMedWeb of Science®Google Scholar Inoue, S. (1981) Video image processing greatly enhances contrast, quality and speed in polarization-based microscopy. J. Cell Biol., 89, 346–356. 10.1083/jcb.89.2.346 PubMedWeb of Science®Google Scholar Junqueira, L.C., E. Raker, and K.R. Porter (1974) Studies on pigment migration in the melanophores of the teleost, Fundulus heteroclitus. Arch. Histol. Jpn., 36, 339–366. 10.1679/aohc1950.36.339 CASPubMedGoogle Scholar Koonce, M.P., and M. Schliwa (1985) Bidirectional organelle transport can occur in cell processes that contain single microtubules. J. Cell Biol., 100, 322–326. 10.1083/jcb.100.1.322 PubMedWeb of Science®Google Scholar Koonce, M.P., and M. Schliwa (1986) Reactivation of organelle movements along the cytoskeletal framework of a giant freshwater amoeba. J. Cell Biol., 103, 605–612. 10.1083/jcb.103.2.605 CASPubMedWeb of Science®Google Scholar Luby, K.J., and K. R. Porter (1980) The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). I. Energy requirments. Cell, 21, 13–23. 10.1016/0092-8674(80)90110-5 CASPubMedWeb of Science®Google Scholar Luby-Phelps, K., and K.R. Porter (1982) The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). II. The role of calcium. Cell, 29, 441–450. 10.1016/0092-8674(82)90160-X CASPubMedWeb of Science®Google Scholar Lye, R.J., M.E. Porter, J.M. Scholey, and J.R. Mclntosh (1987) Identification of a microtubule-based cytoplasmic motor in the nematode Coenorhabditis elegans. Cell, in press. 10.1016/0092-8674(87)90157-7 PubMedWeb of Science®Google Scholar Lynch, T.J., J.D. Taylor, and T.T. Tchen (1986a) Regulation of pigment organelle translocation. I. Phosphorylation of the organelle-associated protein p57. J. Biol. Chem., 261, 4204–4211. CASPubMedWeb of Science®Google Scholar Lynch, T.J., B. Wu, J.D. Taylor, and T.T. Tchen (1986b) Regulation of pigment organelle translocation. II. Participation of a cAMP-dependent protein kinase. J. Biol. Chem., 261, 4212–4216. CASPubMedWeb of Science®Google Scholar McNiven, M.A., M. Wang, and K.R. Porter (1984) Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms. Cell, 37, 753–765. 10.1016/0092-8674(84)90411-2 CASPubMedWeb of Science®Google Scholar McNiven, M.A., J. Ward, and K.R. Porter (1986) Calcium regulated pigment transport in chromatophores. J. Cell Biol., 103, 274a. Google Scholar Morris, J., and R.J. Lasek (1982) Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J. Cell Biol., 92, 192–198. 10.1083/jcb.92.1.192 CASPubMedWeb of Science®Google Scholar Natori, R. (1954) Skinned muscle fibers. Jikeikai Med. J., 1, 119–124. Google Scholar Negishi, S., H.R.C. Fernandez, and M. Obika (1984) The effects of dynein ATPase inhibitors on melanosome translocation within melanophores of the Medaka, Oryzias latipes. Zool. Sci., 2, 469–475. Web of Science®Google Scholar Obika, M. (1986) Intracellular transport of pigment granules in fish chromatophores. Zool. Sci., 3, 1–11. CASWeb of Science®Google Scholar Rozdzial, M.M., and L.T. Haimo (1986a) Reactivated melanophore motility: Differential regulation and nucleotide requirements of bidirectional pigment granule transport. J. Cell Biol., 103, 2755–2764. 10.1083/jcb.103.6.2755 CASPubMedWeb of Science®Google Scholar Rozdzial, M.M., and L.T. Haimo (1986b) Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation. Cell, 47, 1061–1070. 10.1016/0092-8674(86)90821-4 CASPubMedWeb of Science®Google Scholar Simons, T.J.B. (1979) Vanadate—a new tool for cell biologists. Nature, 281, 337–338. 10.1038/281337a0 PubMedWeb of Science®Google Scholar Schliwa, M. (1984) Mechanisms of intracellular organelle transport. Cell Mus. Motil., 5, 1–82. 10.1007/BF00713148 CASPubMedGoogle Scholar Schliwa, M., R.M. Ezzell, and U. Euteneuer (1984) Erythro-9-(3-[2-hydroxynonyl]adenine is an effective inhibitor of cell motility and actin assembly. Proc. Natl. Acad. Sci. U.S.A., 81, 6044–6048. 10.1073/pnas.81.19.6044 CASPubMedWeb of Science®Google Scholar Schnapp, B.J., R.D. Vale, M.P. Sheetz, and T.S. Reese (1985) Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell, 40, 455–462. 10.1016/0092-8674(85)90160-6 CASPubMedWeb of Science®Google Scholar Scholey, J. M., M.E. Porter, P.M. Grissom, and J.R. Mclntosh (1985) Identification of kinesin in sea urchin eggs, and evidence for its localization in the mitotic spindle. Nature, 318, 483–486. 10.1038/318483a0 CASPubMedWeb of Science®Google Scholar Steams, M.E., and R.L. Ochs (1982) A functional in vitro model for studies of intracellular motility in digitonin-permeabilized erythrophores. J. Cell Biol., 94, 727–739. 10.1083/jcb.94.3.727 PubMedWeb of Science®Google Scholar Summers, K.E., and I.R. Gibbons (1971) Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea urchin sperm. Proc. Natl. Acad. Sci. U.S.A. 68, 3092–3096. 10.1073/pnas.68.12.3092 CASPubMedWeb of Science®Google Scholar Szent-Györgyi, A. (1949) Free-energy relations and contraction of actomyosin. Biol. Bull., 96, 140–161. 10.2307/1538196 CASPubMedWeb of Science®Google Scholar Travis, J.L., J.F. Keneally, and R.D. Allen (1983) Studies on the motility of Foraminifere. II. The dynamic cytoskeleton of the reticulopodial network of Albgoromia laticollaris. J. Cell Biol., 97, 1668–1676. 10.1083/jcb.97.6.1668 CASPubMedWeb of Science®Google Scholar Vale, R.D., T.S. Reese, and M.P. Sheetz (1985a) Identification of a novel force-producing protein, kinesin, involved in microtubule-based motility. Cell, 42, 39–50. 10.1016/S0092-8674(85)80099-4 CASPubMedWeb of Science®Google Scholar Vale, R.D., B.J. Schnapp, T. Mitchison, E. Steuer, T.S. Reese, and M.P. Sheetz (1985) Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell, 43, 623–632. 10.1016/0092-8674(85)90234-X CASPubMedWeb of Science®Google Scholar Weber, H.H. (1934) Der Feinbau und die mechanischen Eigenschaften des Myosinfadens. Pflueger's Arch. 235, 205–233. 10.1007/BF01764179 CASGoogle Scholar Yu, F., J.D. Taylor, and T. T. Tchen (1986) Dispersion of carotenoid droplets in permeabilized cultured goldfish xanthophores. J. Cell Biol., 103, 275a. Google Scholar Citing Literature Volume1, Issue2September 1987Pages 65-68 ReferencesRelatedInformation
Referência(s)