Artigo Revisado por pares

The Role of Endogenous Auxin in the Elongation of Avena Leaf Sections

1964; Wiley; Volume: 17; Issue: 1 Linguagem: Inglês

10.1111/j.1399-3054.1964.tb09024.x

ISSN

1399-3054

Autores

Robert E. Cleland,

Tópico(s)

Plant tissue culture and regeneration

Resumo

Physiologia PlantarumVolume 17, Issue 1 p. 126-135 The Role of Endogenous Auxin in the Elongation of Avena Leaf Sections Robert Cleland, Robert Cleland Department of Botany, University of California, Berkeley, California USASearch for more papers by this author Robert Cleland, Robert Cleland Department of Botany, University of California, Berkeley, California USASearch for more papers by this author First published: January 1964 https://doi.org/10.1111/j.1399-3054.1964.tb09024.xCitations: 13AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Bonner, J. & Bandurski, R. S.: Studies of the physiology, Pharmacology and biochemistry of the auxins. Ann. Rev. Plant Physiol. 3: 59–86. 1952. 10.1146/annurev.pp.03.060152.000423 Web of Science®Google Scholar Brian, P. W.: The effects of gibberelling on plant growth and development. Biol. Rev. 34: 37–84. 1958. 10.1111/j.1469-185X.1959.tb01301.x CASWeb of Science®Google Scholar Burström, H.: Studies on growth and metabolism of roots. IV. Positive and negative auxin effects on cell elongation. Physiol. Plant. 3: 277–292. 1950. 10.1111/j.1399-3054.1950.tb07508.x Web of Science®Google Scholar Cleland, R.: Independence of effects of auxin on cell wall methylation and elongation. Plant Physiol. 38: 12–18. 1963. 10.1104/pp.38.1.12 CASPubMedWeb of Science®Google Scholar Feucht, J. R. & Watson, D. P.: The effect of gibberellin on internodal tissues in Phaseolus vulgaris L. Amer. Jour. Bot. 45: 520–522. 1958. 10.2307/2439573 Web of Science®Google Scholar Foster, R. J., McRae, D. H. & Bonner, J.: Auxin-antiauxin interaction at high auxin concentrastion. Plant Physiol. 30: 323–327. 1955. 10.1104/pp.30.4.323 CASPubMedWeb of Science®Google Scholar Fransson, P.: Studies on the interaction of antiauxin and native in wheat roots. Physiol. Plant. 11: 644–654. 1958. 10.1111/j.1399-3054.1958.tb08260.x CASWeb of Science®Google Scholar Fransson, P. An active state of auxin in wheat roots. Physiol. Plant. 13: 398–428. 1960. 10.1111/j.1399-3054.1960.tb08042.x CASWeb of Science®Google Scholar Fransson, P. & Ingestad, T.: The effect of an antiauxin on the indoleacetic acid content in Avena coloeoptiles. Physiol. Plant. 8: 336–342. 1955. 10.1111/j.1399-3054.1955.tb08979.x CASWeb of Science®Google Scholar Gentile, A. C. & Klein, R. M.: The apparent necessity of indoleacetic acid for the growth of Diplodia (Fungi imperfecti). Physiol. Plant. 8: 291–299. 1955. CASWeb of Science®Google Scholar Guttridge. C. G. & Thompson, P. A.: Effect of gibberecllic acid on length and number of epidermal cells in petioles of strawberry. Nature 183: 197–198. 1959. 10.1038/183197b0 CASPubMedWeb of Science®Google Scholar Haber, A. H.: Nonessentially of coneurrent cell devision for degree of polarization of leaf growth. I. Studies with radiation-induced mitotic inhibition. Amer. J. Bot. 49: 583–589. 1962. 10.2307/2439715 Web of Science®Google Scholar Harada, H. & Nitsch, J. P.: Changes in endogenous growth substance during flower development. Plant Physiol. 34: 409–415. 1959. 10.1104/pp.34.4.409 CASPubMedWeb of Science®Google Scholar Hayashi, T. & Murakami, Y.: The biochemistry of Bakanae fungus. 32. The physiological action of gibberellin. VII. Response of different parts of cereal grass leaf to gibberellin. J. Agr. Chem. Soc. Japan 28: 543–545. 1954. CASGoogle Scholar Hayashi, T. Takijima, Y. & Murakami, Y.: The biochemistry of Bakanae fungus. 28. The physiological action of gibberellin. IV. J. Agr. Chem. Soc. Japan 27: 672–675. 1953. CASGoogle Scholar Housley, S.: Kinetics of auxin-induced growth. Encyl. Plant Physiol. 14: 1007–1043. 1961. Google Scholar Kato, J.: Studies on the physiological effect of gibberellin. VI. Interaction of gibberellin with antiauxin. Mem. Coll. Science, Kyoto Univ., Ser. B. 28: 119–129. 1961. Google Scholar Kefford, N. P.: Auxin-gibberellin interaction in rice coleoptile elongation. Plant Physiol. 37: 380–386. 1962. 10.1104/pp.37.3.380 CASPubMedWeb of Science®Google Scholar Kefford, N. P. & Goldacre, P. L.: The changing concept of auxin. Amer. J. Bot. 48: 643–650. 1961. 10.1002/j.1537-2197.1961.tb11692.x CASWeb of Science®Google Scholar Klein, R. M. & Vogel, H. H., Jr.: Necessity of indoleacetic acid for the duplication of crown-gall tumor cells. Plant Physiol. 31: 17–22. 1956. 10.1104/pp.31.1.17 CASPubMedWeb of Science®Google Scholar Libbert, E.: Die Regulation des Wurzelwachstums durch Synthetische und endogene Inhibitoren. Planta 50: 25–40. 1957. 10.1007/BF01912341 CASWeb of Science®Google Scholar Luckwill, L. C.: Hormonal aspects of fruit development in higher plants. Sympos. Soc. Expt. Biol. 11: 63–85. 1957. Google Scholar MaRae, D. H. & Bonner, J.: Chemical structure and antiauxin activity. Physiol. Plant. 6: 485–510. 1953. 10.1111/j.1399-3054.1953.tb08406.x CASWeb of Science®Google Scholar Murakami, Y.: The growth of rice leaf sheath. Bot. Mag. Tokyo 69: 258–262. 1956. 10.15281/jplantres1887.69.258 Google Scholar van Overbeek, J. & Dowling, L.: Inhibition of gibberellin action by auxin. — In: Plant Growth Regulation. R.M. Klein, ed. pp. 657–663. Iowa State Press. Ames , lowa . 1961. Google Scholar Purvis, W. K. & Hillman, W. S.: Experimental separation of gibberelling and auxin actions in etiolated pea epicotyl sections. Physiol. Plant. 12: 786–798. 1959. 10.1111/j.1399-3054.1959.tb08913.x Web of Science®Google Scholar Radley, M.: The distribution of substances similar to gibberellic acid in higher plants. Ann. Bot. N.S. 22: 297–307. 1958. 10.1093/oxfordjournals.aob.a083614 CASGoogle Scholar Sachs, R. M., Bretz, C. F. & Lang, A.: Shoot histogenesis: the early effects of gibberellin upon stem elongation in two rosette plants. Amer. Jour. Bot. 46: 376–384. 1959. 10.1002/j.1537-2197.1959.tb07027.x CASWeb of Science®Google Scholar Scott, T. K. & Briggs, W.R.: Auxin relationships in the Alaska pea. Amer. J. Bot. 47: 492–499. 1960. 10.2307/2439565 CASWeb of Science®Google Scholar Skene, K. G. M. & Carr, D. J.: Studies of a wheat leaf assay for the quantitative determination of gibberellin activity in plant extracts. Phyton 16: 97–115. 1961. Google Scholar Skoog, F., Schneider, C. L. & Malan, P.: Interactions of auxins in growth and inhibition. Amer. J. Bot. 29: 568–576. 1942. 10.2307/2437106 CASGoogle Scholar Virgin, H. I.: Light-induced unfolding of the grass leaf. Physiol. Plant. 15: 380–384. 1962. 10.1111/j.1399-3054.1962.tb08037.x Web of Science®Google Scholar Went, F. W.: Wuchsstoff und Wachstum. Rec. Trav. Bot. Neerl. 25: 1–116. 1928. Google Scholar Went, F. W. & Thimann, K. V.: Phytohormones. 294 p. McMillin & Co., N. Y. 1937. Google Scholar Citing Literature Volume17, Issue1January 1964Pages 126-135 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX