Unique in the shopping mall: On the reidentifiability of credit card metadata
2015; American Association for the Advancement of Science; Volume: 347; Issue: 6221 Linguagem: Inglês
10.1126/science.1256297
ISSN1095-9203
AutoresYves-Alexandre de Montjoye, Laura Radaelli, Vivek K. Singh, Alex Pentland,
Tópico(s)Privacy, Security, and Data Protection
ResumoLarge-scale data sets of human behavior have the potential to fundamentally transform the way we fight diseases, design cities, or perform research. Metadata, however, contain sensitive information. Understanding the privacy of these data sets is key to their broad use and, ultimately, their impact. We study 3 months of credit card records for 1.1 million people and show that four spatiotemporal points are enough to uniquely reidentify 90% of individuals. We show that knowing the price of a transaction increases the risk of reidentification by 22%, on average. Finally, we show that even data sets that provide coarse information at any or all of the dimensions provide little anonymity and that women are more reidentifiable than men in credit card metadata.
Referência(s)