Review: An Overview of theSaccharomyces cerevisiae Microtubule and Microfilament Cytoskeleton
1997; Wiley; Volume: 13; Issue: 5 Linguagem: Inglês
10.1002/(sici)1097-0061(199704)13
ISSN1097-0061
AutoresBarbara Winsor, Elmar Schiebel,
Tópico(s)Photosynthetic Processes and Mechanisms
ResumoYeastVolume 13, Issue 5 p. 399-434 Review ArticleFree Access Review: An Overview of the Saccharomyces cerevisiae Microtubule and Microfilament Cytoskeleton BARBARA WINSOR, Corresponding Author BARBARA WINSOR Institut de Biologie Moléculaire et Cellulaire, UPR 9005 du CNRS, 15 Rue René Descartes, 67084 Strasbourg-cedex, FranceInstitut de Biologie Moléculaire et Cellulaire, UPR 9005 du CNRS, 15 Rue René Descartes, 67084 Strasbourg-cedex, FranceSearch for more papers by this authorELMAR SCHIEBEL, ELMAR SCHIEBEL Max-Planck Institut für Biochemie, Genzentrum, Am Klopferspitz 18a, 82152 Martinsried, GermanySearch for more papers by this author BARBARA WINSOR, Corresponding Author BARBARA WINSOR Institut de Biologie Moléculaire et Cellulaire, UPR 9005 du CNRS, 15 Rue René Descartes, 67084 Strasbourg-cedex, FranceInstitut de Biologie Moléculaire et Cellulaire, UPR 9005 du CNRS, 15 Rue René Descartes, 67084 Strasbourg-cedex, FranceSearch for more papers by this authorELMAR SCHIEBEL, ELMAR SCHIEBEL Max-Planck Institut für Biochemie, Genzentrum, Am Klopferspitz 18a, 82152 Martinsried, GermanySearch for more papers by this author First published: 04 December 1998 https://doi.org/10.1002/(SICI)1097-0061(199704)13:5 3.0.CO;2-9Citations: 53AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat References 1 Adams, A. E. M. and Botstein, D. (1989). Dominant suppressors of yeast actin mutations that are reciprocally suppressed. Genetics 121, 675– 683. 2 Adams, A. E. M., Botstein, D. and Drubin, D. G. (1989). A yeast actin-binding protein is encoded by SAC6, a gene found by suppression of an actin mutation. Science 243, 231– 233. 3 Adams, A. E. M., Botstein, D. and Drubin, D. G. (1991). Requirement of yeast fimbrin for actin organization and morphogenesis in vivo. Nature 354, 404– 408. 4 Adams, A. E. M., Cooper, J. A. and Drubin, D. G. (1993). Unexpected combinations of null mutations in genes encoding the actin cytoskeleton are lethal in yeast. Mol. Biol. Cell 4, 459– 468. 5 Adams, A. E. M., Johnson, D. I., Longnecker, R. M., Sloat, B. F. and Pringle, J. R. (1990). CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. Cell Biol. 111, 131– 142. 6 Adams, A. E. M. and Pringle, J. R. (1984). Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J. Cell Biol. 98, 934– 945. 7 Amatruda, J. F., Cannon, J. F., Tatchell, K., Hug, C. and Cooper, J. A. (1990). Disruption of the actin cytoskeleton in yeast capping protein mutants. Nature 344, 352– 354. 8 Amatruda, J. F. and Cooper, J. A. (1992). Purifi-cation, characterization, and immunofluorescence localization of Saccharomyces cerevisiae capping protein. J. Cell Biol. 117, 1067– 1076. 9 Amatruda, J. F., Gattermeir, D. J., Karpova, T. S. and Cooper, J. A. (1992). Effects of null mutations and overexpression of capping protein on morphogenesis, actin distribution and polarized secretion in yeast. J. Cell Biol. 119, 1151– 1162. 10 Amberg, D. C., Basart, E. and Botstein, D. (1995). Defining protein interaction with yeast actin in vivo. Nat. Struct. Biol. 2, 28– 35. 11 Archer, J. E., Vega, L. R. and Solomon, F. (1995). Rb12p, a yeast protein that binds to β-tubulin and participates in microtubule function in vivo. Cell 82, 425– 434. 12 Balasubramanian, M. K., Hirani, B. R., Burke, J. D. and Gould, K. L. (1994). The Schizosaccharomyces pombe cdc 3+ gene encodes a profilin essential for cytokinesis. J. Cell Biol. 125, 1289– 1301. 13 Barnes, G., Louie, K. A. and Botstein, D. (1992). Yeast proteins associated with microtubules in vitro and in vivo. Mol. Biol. Cell 3, 29– 47. 14 Bauer, A. and Kö lling, R. (1996). The SAC3 gene encodes a nuclear protein required for normal progression of mitosis. J. Cell Sci. 109, 1575– 1583. 15 Bauer, F., Urdaci, M., Aigle, M. and Crouzet, M. (1993). Alteration of a yeast SH3 protein leads to conditional viability with defects in cytoskeletal and budding patterns. Mol. Cell. Biol. 13, 5070– 5084. 16 Baum, P., Furlong, C. and Byers, B. (1986). Yeast gene required for spindle pole body duplication: Homology of its product with Ca2+-binding proteins. Proc. Natl. Acad. Sci. USA 83, 5512– 5516. 17 Bénédetti, H., Raths, S., Crausaz, F. and Riezman, H. (1994). The END3 gene encodes a protein that is required for the internalization step of endocytosis and for actin cytoskeleton organisation in yeast. Mol. Biol. Cell 5, 1023– 1037. 18 Bergez, P., Doignon, F. and Crouzet, M. (1995). The sequence of a 44 420 bp fragment located on the left arm of chromosome XIV from Saccharomyces cerevisiae. Yeast 11, 967– 974. 19 Berlin, V., Styles, C. A. and Fink, G. R. (1990). BIK1, a protein required for microtubule function during mating and mitosis in Saccharomyces cerevisiae, colocalizes with tubulin. J. Cell Biol. 111, 2573– 2586. 20 Biggins, S., Ivanovska, I. and Rose, M. D. (1996). Yeast ubiquitin genes are involved in duplication of the microtubule organizing center. J. Cell Biol. 133, 1331– 1346. 21 Biggins, S. and Rose, M. D. (1994). Direct interaction between yeast spindle pole body components: Kar1p is required for Cdc31p localization to the spindle pole body. J. Cell Biol. 125, 843– 852. 22 Bobola, N., Jansen, R. P., Shin, T. H. and Nasmyth, K. (1996). Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84, 699– 709. 23 Bremer, A., Millonig, R. C., Sütterlin, R., Engel, A. and Pollard, T. D. (1991). The structural basis for the intrinsic disorder of the F-actin filament: the lateral slipping model. J. Cell Biol. 115, 689– 703. 24 Brockerho, S. E. and Davis, T. N. (1992). Calmodulin concentrates at regions of cell growth in Saccharomyces cerevisiae. J. Cell Biol. 118, 619– 629. 25 Brockerho, S. E., Stevens, R. C. and Davis, T. N. (1994). The unconventional myosin, Myo2p, is a calmodulin target at sites of cell growth in Saccharomyces cerevisiae. J. Cell Biol. 124, 315– 323. 26 Burke, D., Gasdaska, P. and Hartwell, L. (1989). Dominant effects of tubulin overexpression in Saccharomyces cerevisiae. J. Cell Biol. 3, 1049– 1059. 27 Burns, R. G. (1995). Analysis of the γ-tubulin sequences: Implications for the functional properties of γ-tubulin. J. Cell Sci. 108, 2123– 2130. 28 Burns, R. G. and Farrell, K. W. (1996). Getting to the heart of ββ-tubulin. Trends Cell Biol. 6, 297– 303. 29 Byers, B. (1981a). Multiple roles of the spindle pole bodies in the life cycle of Saccharomyces cerevisiae. In Wettstein, D., Stenderup, A., Kielland-Brandt, M. and Friis, J. (Eds), Molecular Genetics in Yeast. Alfred Benzon Symp., pp. 119– 133. 30 Byers, B. (1981b). Cytology of the Yeast Life Cycle. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 31 Byers, B. and Goetsch, L. (1974). Duplication of spindle plaques and integration of the yeast cell cycle. Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 123– 131. 32 Byers, B. and Goetsch, L. (1975). Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J. Bacteriol. 124, 511– 523. 33 Byers, B., Shriver, K. and Goetsch, L. (1978). The role of spindle pole bodies and modified microtubule ends in the initiation of microtubule assembly in Saccharomyces cerevisiae. J. Cell Sci. 30, 331– 352. 34 Carlier, M.-F., Didry, D., Erk, I., et al. (1996). Tβ4 is not a simple G-actin sequestering protein and interacts with F-actin at high concentration. J. Biol. Chem. 271, 9231– 9239. 35 Carlier, M.-F., Jean, C., Rieger, K. J., Lenfant, M. and Pantaloni, D. (1993). Modulation of the interaction between G-actin and thymosin β4 by the ATP/ADP ratio: possible implication in the regulation of actin dynamics. Proc. Natl. Acad. Sci. USA 90, 5034– 5038. 36 Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. and Prasher, D. C. (1994). Green fluorescent protein as a marker for gene expression. Science 263, 802– 805. 37 Chen, X., Cook, R. K. and Rubenstein, P. A. (1993). Yeast actin with a mutation in the hydrophobic plug between subdomains 3 and 4 (L266D) displays a cold-sensitive polymerization defect. J. Cell Biol. 123, 1185– 1195. 38 Chen, X., Sullivan, D. S. and Huffaker, T. C. (1994). Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc. Natl. Acad. Sci. USA 91, 9111– 9115. 39 Cheney, R. E., Riley, M. A. and Mooseker, M. S. (1993). Phylogenetic analysis of the myosin superfamily. Cell Motil. Cytoskel. 24, 215– 223. 40 Chowdhury, S., Smith, K. W. and Gustin, M. C. (1992). Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. J. Cell Biol. 118, 561– 571. 41 Clark, S. W. and Meyer, D. I. (1994). ACT3 : a putative centractin homolog in S. cerevisiae is required for proper orientation of the mitotic spindle. J. Cell Biol. 127, 129– 138. 42 Cleves, A. E., Novick, P. J. and Bankaitis, V. A. (1989). Mutation in the SAC1 gene suppresses defects in yeast Golgi and yeast actin functions. J. Cell Biol. 109, 2939– 2950. 43 Conde, J. and Fink, G. R. (1976). A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA 73, 3651– 3655. 44 Cook, R. K., Blake, W. T. and Rubenstein, P. A. (1992). Removal of the amino-terminal acidic residues of yeast actin. J. Biol. Chem. 267, 9430– 9436. 45 Cook, R. K., Root, D., Miller, C., Reisler, E. and Rubenstein, P. A. (1993). Enhanced stimulation of myosin sub-fragment 1 ATPase activity by addition of negatively charged residues to the yeast actin NH2 terminus. J. Biol. Chem. 268, 2410– 2415. 46 Cooper, J. A., and Kiehart, D. P. (1996). Septins may form a ubiquitous family of cytoskeletal filaments. J. Cell Biol. 134, 1345– 1348. 47 Cope, M. J., Whisstock, J., Rayment, I. and Kendrick-Jones, J. (1996). Conservation within the myosin motor domain: implications for structure and function. Structure 4, 969– 987. 48 Crouzet, M., Urdaci, M., Dulau, L. and Aigle, M. (1991). Yeast mutant aVected for viability upon nutrient starvation: characterization and cloning of the RVS161 gene. Yeast 7, 727– 743. 49 Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A. and Tsien, R. Y. (1995). Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448– 455. 50 Cvrcková, F. and Nasmyth, K. (1993). Yeast G1 cyclins CLN1 and CLN2 and a GAP-like protein have a role in bud formation. EMBO J. 12, 5277– 5286. 51 Crvcková, F., Virgilio, C. D., Manser, E., Pringle, J. R. and Nasmyth, K. (1995). Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev. 9, 1817– 1830. 52 Davis, A., Sage, C. R., Dougherty, C. A. and Farrell, K. W. (1994). Microtubule dynamics modulated by guanosine triphosphate hydrolysis activity of β-tubulin. Science 264, 839– 842. 53 Dick, T., Surana, U. and Chia, W. (1996). Molecular and genetic characterization of SLC1, a putative Saccharomyces cerevisiae homolog of the metazoan cytoplasmic dynein light chain 1. Mol. Gen. Genet. 251, 38– 43. 54 Donaldson, A. D. and Kilmartin, J. V. (1996). Spc42p: A phosphorylated component of the S. cerevisiae spindle pole body (SPB) with an essential function during SPB duplication. J. Cell Biol. 132, 887– 901. 55 Donnelly, S. F. H., Pickington, M. J., Pallotta, D. and Orr, E. (1993). A prolin-rich protein, verprolin, involved in cytoskeletal organization and cellular growth in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 10, 585– 596. 56 Doyle, T. and Botstein, D. (1996). Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc. Natl. Acad. Sci. USA 93, 3886– 3891. 57 Drees, B., Brown, C., Barrell, B. G. and Bretscher, A. (1995). Tropomyosin is essential in yeast, yet the TPM1 and TPM2 products perform distinct functions. J. Cell Biol. 128, 383– 392. 58 Drubin, D. G. (1990). Actin and actin-binding proteins in yeast. Cell Motil. Cytoskel. 15, 7– 11. 59 Drubin, D. G., Jones, H. D. and Wertman, K. F. (1993). Actin structure and function: roles in mitochondrial organization and morphogenesis in budding yeast and identification of the phalloidinbinding site. Mol. Biol. Cell 4, 1277– 1294. 60 Drubin, D. G., Miller, K. G. and Botstein, D. (1988). Yeast actin-binding proteins: evidence for a role in morphogenesis. J. Cell Biol. 107, 2551– 2561. 61 Drubin, D. G., Mulholland, J., Zhu, Z. and Botstein, D. (1990). Homology of a yeast actinbinding protein to signal transduction proteins and myosin-I. Nature 343, 288– 290. 62 Dunn, T. M. and Shortle, D. (1990). Null alleles of SAC7 suppress temperature-sensitive actin mutations in Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 2308– 2314. 63 Endow, S. A., Kang, S. J., Satterwhite, L. L., Rose, M. D., Skeen, V. P. and Salmon, E. D. (1994). Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J. 13, 2708– 2713. 64 Eshel, D., Urrestarazu, L. A., Vissers, S., Jauniaux, J.-C. and Vliet-Reedijk, J. C. v. (1993). Cytoplasmic dynein is required for normal nuclear segregation in yeast. Proc. Natl. Acad. Sci. USA 90, 11172– 11176. 65 Fields, S. and Song, O. (1989). A novel genetic system to detect protein-protein interactions. Nature 340, 245– 246. 66 Fitch, I., Dahman, C., Surana, U., Amon, A., Goetsch, L., Byers, B. and Futcher, B. (1992). Characterization of four B-type cyclin genes of the budding yeast S. cerevisiae. Mol. Biol. Cell 3, 805– 818. 67 Ford, S. K. and Pringle, J. R. (1991). Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC11 gene product and the timing of the events at the budding site. Dev. Genet. 12, 281– 292. 68 Frankel, S. and Mooseker, M. S. (1996). The actin-related proteins. Curr. Opin. Cell Biol. 8, 30– 37. 69 Gehrung, S. and Snyder, M. (1990). The SPA2 gene of Saccharomyces cerevisiae is important for pheromone-induced morphogenesis and eYcient mating. J. Cell Biol. 111, 1451– 1464. 70 Geier, B., Wiech, H. and Schiebel, E. (1996). Binding of centrins and yeast calmodulin to synthetic peptides corresponding to binding sites in the spindle pole body component Kar1p and Spc110p. J. Biol. Chem. 271, 28366– 28374. 71 Geiser, J. R., Sundberg, H. A., Chang, B. H., Muller, E. G. D. and Davis, T. N. (1993). The essential mitotic target of calmodulin is the 110-kilodalton component of the spindle pole body in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 7913– 7924. 72 Geissler, S., Pereira, G., Spang, A., et al. (1996). The spindle pole body component Spc98p interacts with the γ-tubulin-like Tub4p of Saccharomyces cerevisiae at the sites of microtubule attachment. EMBO J. 15, 3899– 3911. 73 Geli, M. I. and Riezman, H. (1996). Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272, 533– 535. 74 Georgatos, S. D., Maroulakou, I. and Blobel, G. (1989). Lamin A, lamin B, and lamin B receptor analogues in yeast. J. Cell Biol. 108, 2069– 2082. 75 Gibbons, I. R. (1988). Dynein ATPases as microtubule motors. J. Biol. Chem. 263, 15837– 15840. 76 Gimenco, C. J., Ljungdahl, P. O., Styles, C. A. and Fink, G. R. (1992). Unipolar cell divisions in the yeast Saccharomyces cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077– 1090. 77 Goldschmidt-Clermont, P. J., Furman, M. I., Wachsstock, D., Safer, D., Nachmias, V. T. and Pollard, T. D. (1992). The control of actin nucleotide exchange by thymosin-beta4 and profilin. A potential regulatory mechanism for actin polymerization. Mol. Biol. Cell 3, 1015– 1024. 78 Goldschmidt-Clermont, P. J., Machesky, L. M., Baldassare, J. J. and Pollard, T. D. (1990). The actin-binding protein profilin binds to PIP2and inhibits its hydrolysis by phospholipase C. Science 247, 1575– 1578. 79 Goldschmidt-Clermont, P. J., Machesky, L. M., Doberstein, S. K. and Pollard, T. D. (1991). Mechanism of the interaction of human platelet profilin with actin. J. Cell Biol. 113, 1081– 1089. 80 Goldstein, L. S. B. (1993). Functional redundancy in mitotic force generation. J. Cell Biol. 120, 1– 3. 81 Goodson, H. V., Anderson, B. L., Warrick, H. M., Pon, L. A. and Spudich, J. A. (1996). Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton. J. Cell Biol. 133, 1277– 1291. 82 Goodson, H. V. and Spudich, J. A. (1995). Identi-fication and molecular characterization of a yeast myosin I. Cell Motil. Cytoskel. 30, 73– 84. 83 Govindan, B., Bowser, R. and Novick, P. (1995). The role of Myo2, a yeast class V myosin, in vesicular transport. J. Cell Biol. 128, 1055– 1068. 84 Haarer, B. K., Lillie, S. H., Adams, A. E. M., Magdolen, V., Bandlow, W. and Brown, S. S. (1990). Purification of profilin from Saccharomyces cerevisiae and analysis of profilin-deficient cells. J. Cell Biol. 110, 105– 114. 85 Haarer, B. K., Lillie, S. H. and Brown, S. S. (1994). Identification of MYO4, a second class V myosin gene in yeast. J. Cell Sci. 107, 1055– 1064. 86 Haarer, B. K., Petzold, A. S. and Brown, S. S. (1993). Mutational analysis of yeast profilin. Mol. Cell. Biol. 13, 7864– 7873. 87 Harata, M., Karwan, A. and Wintersberger, U. (1994). An essential gene of Saccharomyces cerevisiae coding for an actin-related protein. Proc. Natl. Acad. Sci. USA 91, 8258– 8262. 88 Hasek, J., Rupes, I., Svobodova, J. and Streiblova, E. (1987). Tubulin and actin topology during zygote formation of Saccharomyces cerevisiae. J. Gen. Microbiol. 133, 3355– 3363. 89 Holmes, K. C., Pop, D., Gebhard, W. and Kabsch, W. (1990). The most detailed model of the actin filament available at present. Nature 347, 44– 49. 90 Holtzman, D. A., Wertman, K. F. and Drubin, D. G. (1994). Mapping actin surfaces required for functional interactions in vivo. J. Cell Biol. 126, 423– 432. 91 Holtzman, D. A., Yang, S. and Drubin, D. G. (1993). Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae. J. Cell Biol. 122, 635– 644. 92 Honts, J. E., Sandrock, T. S., Brower, S. M., O'Dell, J. L. and Adams, A. E. M. (1994). Actin mutations that show suppression with fimbrin mutations identify a likely fimbrin-binding site on actin. J. Cell Biol. 126, 413– 422. 93 Hoyt, M. A., He, L., Loo, K. K. and Saunders, W. S. (1992). Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly. J. Cell Biol. 118, 109– 120. 94 Hoyt, M. A., He, L., Totis, L. and Saunders, W. S. (1993). Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 135, 35– 44. 95 Hoyt, M. A., Stearns, T. and Botstein, D. (1990). Chromosome instability mutants of Saccharomyces cerevisiae that are defective in microtubulemediated processes. Mol. Cell. Biol. 10, 223– 234. 96 Hoyt, M. A., Totis, L. and Roberts, B. T. (1991). S. cerevisiae genes required for cell-cycle arrest in response to loss of microtubule function. Cell 66, 507– 517. 97 Huang, M.-E., Souciet, J.-L., Chuat, J.-C. and Galibert, F. (1996). Identification of ACT4, a novel essential actin-related gene in the yeast Saccharomyces cerevisiae. Yeast 12, 839– 848. 98 Huffaker, T. C., Hoyt, M. A. and Botstein, D. (1987). Genetic analysis of the yeast cytoskeleton. Ann. Rev. Genet. 21, 259– 284. 99 Iida, H., Yagawa, Y. and Anraku, Y. (1990). Essential role for induced Ca2+influx followed by [Ca2+] i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. J. Biol. Chem. 265, 13391– 13399. 100 Iida, K., Moriyama, K., Matsumoto, S., Kawasaki, H., Nishida, E. and Yahara, I. (1993). Isolation of a yeast essential gene, COF1, that encodes a homologue of mammalian cofilin, a low-M(r) actin-binding and polymerizing protein. Gene 124, 115– 120. 101 Jacobs, C. W., Adams, A. E. M., Szaniszlo, P. J. and Pringle, J. R. (1988). Functions of microtubules in the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 107, 1409– 1426. 102 Jansen, R.-P., Dowzer, C., Michaelis, C., Galova, M. and Nasmyth, K. (1996). Mother cell-specific HO expression in budding yeast depends on the unconventional myosin Myo4p and other cytoplasmic proteins. Cell 84, 687– 697. 103 Jiang, Y. W. and Stillman, D. J. (1996). Epigenetic effects on yeast transcription caused by mutations in an actin-related protein present in the nucleus. Gen. Dev. 10, 604– 619. 104 Johannes, F.-J. and Gallwitz, D. (1991). Sitedirected mutagenesis of the yeast actin gene: a test for actin function in vivo. EMBO J. 10, 3951– 3958. 105 Johnston, G. C., Prendergast, J. A. and Singer, R. A. (1991). The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J. Cell Biol. 113, 539– 551. 106 Kabsch, W. and Holmes, K. G. (1995). The actin fold. FASEB J. 9, 167– 174. 107 Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. and Holmes, K. C. (1990). Atomic structure of the actin: DNaseI complex. Nature 347, 37– 44. 108 Karpova, T. S., Lepetit, M. M. and Cooper, J. A. (1993). Mutations that enhance the cap2 null phenotype in Saccharomyces cerevisiae affect the actin cytoskeleton, morphogenesis and pattern of growth. Genetics 135, 693– 709. 109 Karpova, T. S., Tatchell, K. and Cooper, J. A. (1995). Actin filaments in yeast are unstable in the absence of capping protein or fimbrin. J. Cell Biol. 131, 1483– 1493. 110 Kelleher, J. F., Atkinson, S. J. and Pollard, T. D. (1995). Sequences, structural models and cellular localization of the actin-related proteins Arp2 and Arp3 from Acanthamoeba. J. Cell Biol. 131, 385– 397. 111 Kilmartin, J. V. and Adams, A. E. M. (1984). Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98, 922– 933. 112 Kilmartin, J. V., Dyos, S. L., Kershgaw, D. and Finch, J. T. (1993). A spacer protein in the Saccharomyces cerevisiae spindle pole body whose transcription is cell-cycle regulated. J. Cell Biol. 123, 1175– 1184. 113 Kilmartin, J. V. and Goh, P.-Y. (1996). Spc110p: Assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. EMBO J. 15, 4592– 4602. 114 King, R. W., Peters, J.-M., Tugendreich, S., Rolfe, M., Hieter, P. and Kirschner, M. W. (1995). A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81, 279– 288. 115 Kölling, R., Nguyen, T., Chen, E. Y. and Botstein, D. (1993). A new yeast gene with a myosin-like heptad repeat structure. Mol. Gen. Genet. 237, 359– 369. 116 Kübler, E. and Riezman, H. (1993). Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J. 12, 2855– 2862. 117 Kübler, E., Schimmöller, F. and Riezman, H. (1994). Calcium-independent calmodulin requirement for endocytosis in yeast. EMBO J. 13, 5539– 5546. 118 Lamb, J. R., Michaud, W. A., Sikorski, R. S. and Hieter, P. (1994). Cdc16p, Csc23p and Cdc27p form a complex essential for mitosis. EMBO J. 13, 4321– 4328. 119 Lauzé, E., Stoelcker, B., Luca, F. C., Weiss, E., Schutz, A. R. and Winey, M. (1995). Yeast spindle pole body duplication gene MPS1 encodes an essential dual specificity protein kinase. EMBO J. 14, 1655– 1663. 120 Lazzarino, D., Boldogh, I., Smith, M. G., Rosand, J. and Pon, L. A. (1994). Yeast mitochondria contain ATP-sensitive, reversible actin-binding activity. Mol. Biol. Cell 5, 807– 818. 121 Lees-Miller, J. P., Helfman, D. M. and Schroer, T. A. (1992). A vertebrate actin-related protein is a component of a multisubunit complex involved in microtubule-based vesicle motility. Nature 359, 244– 246. 122 Leeuw, T., Fourest-Lieuvin, A., Wu, C., et al. (1995). Pheromone response in yeast: association of Bem1p with proteins of the MAP kinase cascade and actin. Science 270, 1210– 1213. 123 Lew, D. J. and Reed, S. I. (1993). Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120, 1305– 1320. 124 Lew, D. J. and Reed, S. I. (1995). Cell cycle control of morphogenesis in budding yeast. Curr. Opin. Genet. Dev. 5, 17– 23. 125 Li, R., Havel, C., Watson, J. A. and Murray, A. W. (1993). The mitotic feedback-control gene MAD2 encodes the alpha-subunit of a phenyltransferase. Nature 366, 82– 84. 126 Li, R. and Murray, A. W. (1991). Feedback control of mitosis in budding yeast. Cell 66, 519– 531. 127 Li, R., Zheng, Y. and Drubin, D. G. (1995). Regulation of cortical actin cytoskeleton assembly during polarized cell growth in budding yeast. J. Cell Biol. 128, 599– 615. 128 Li, Y.-Y., Yeh, E., Hays, T. and B loom, K. (1993). Disruption of mitotic spindle orientation in a yeast dynein mutant. Proc. Natl. Acad. Sci. USA 90, 10096– 10100. 129 Lillie, S. H. and Brown, S. S. (1992). Suppression of a myosin defect by a kinesin-related gene. Nature 356, 358– 361. 130 Lillie, S. H. and Brown, S. S. (1994). Immuno-fluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J. Cell Biol. 125, 825– 842. 131 Liu, H. and Bretscher, A. (1989). Disruption of the single tropomyosin gene in yeast results in the disappearance of actin cables from the cytoskeleton. Cell 57, 233– 242. 132 Liu, H. and Bretscher, A. (1992). Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport. J. Cell Biol. 118, 285– 299. 133 Longtime, M. S., DeMarini, D. J., Valencik, M. L., et al. (1996). The septins: roles in cytokinesis and other processes. Curr. Opin. Cell Biol. 8, 106– 119. 134 Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. and Pollard, T. D. (1994). Purification of a cortical complex containing two unconventional actins from Acanthamoaba by affinity chromatography on profilin-agarose. J. Cell Biol. 127, 107– 115. 135 Magdolen, V., Drubin, D. G., Mages, G. and Bandlow, W. (1993). High levels of profilin suppress the lethality caused by overproduction of actin in yeast cells. FEBS 316, 41– 47. 136 Magdolen, V., Oechsner, U., Müller, G. and Bandlow, W. (1988). The intron-containing gene for yeast profilin ( PFY ) encodes a vital function. Mol. Cell. Biol. 8, 5108– 5115. 137 Marschall, L. G., Jeng, R. L., Mulholland, J. and Stearns, T. (1996). Analysis of Tub4p, a yeast γ-tubulin-like protein: Implications for microtubule-organizing center function. J. Cell Biol. 134, 443– 454. 138 Matsui, Y. and Toh-e, A. (1992a). Isolation and characterization of two novel ras superfamily genes in Saccharomyces cerevisiae. Gene 114, 43– 49. 139 Matsui, Y. and Toh-e, A. (1992b). Yeast RHO3 and RHO4 ras superfamily genes are necessary for bud growth, and their defect is suppressed by a high dose of bud formation genes CDC42 and BEM1. Mol. Cell. Biol. 12, 5690– 5699. 140 Mazzoni,
Referência(s)