Artigo Revisado por pares

Migration of and in undisturbed soil profiles under controlled and close-to-real conditions

2000; Elsevier BV; Volume: 50; Issue: 3 Linguagem: Inglês

10.1016/s0265-931x(00)00015-1

ISSN

1879-1700

Autores

Sverker Forsberg, Klas Rosén, Victor Gimenez Fernandez, H Juhan,

Tópico(s)

Nuclear and radioactivity studies

Resumo

Migration of 137Cs and 90Sr in undisturbed soil was studied in large lysimeters three and four years after contamination, as part of a larger European project studying radionuclide soil–plant interactions. The lysimeters were installed in greenhouses with climate control and contaminated with radionuclides in an aerosol mixture, simulating fallout from a nuclear accident. The soil types studied were loam, silt loam, sandy loam and loamy sand. The soils were sampled to 30–40 cm depth in 1997 and 1998. The total deposition of 137Cs ranged from 24 to 45 MBq/m2, and of 90Sr from 23 to 52 MBq/m2. It was shown that migration of 137Cs was fastest in sandy loam, and of 90Sr fastest in sandy loam and loam. The slowest migration of both nuclides was found in loamy sand. Retention within the upper 5 cm was 60% for both 137Cs and 90Sr in sandy loam, while in loamy sand it was 97 and 96%, respectively. In 1998, migration rates, calculated as radionuclide weighted median depth (migration centre) divided by time since deposition were 1.1 cm/year for both 137Cs and 90Sr in sandy loam, 0.8 and 1.0 cm/year, respectively, in loam, 0.6 and 0.8 cm/year in silt loam, and 0.4 and 0.6 cm/year for 137Cs and 90Sr, respectively, in loamy sand. A distinction is made between short-term migration, caused by events soon after deposition and less affected by soil type, and long-term migration, more affected by e.g. soil texture. Three to four years after deposition, effects of short-term migration is still dominant in the studied soils.

Referência(s)