A Review of the Magnetic Relaxation and Its Application to the Study of Atomic Defects in ?-Iron and Its Diluted Alloys
2000; Wiley; Volume: 181; Issue: 2 Linguagem: Inglês
10.1002/1521-396x(200010)181
ISSN1521-396X
AutoresH. J. Blythe, H. Kronm�ller, A. Seeger, F. Walz,
Tópico(s)Magnetic Properties and Applications
Resumophysica status solidi (a)Volume 181, Issue 2 p. 233-345 Review Article A Review of the Magnetic Relaxation and Its Application to the Study of Atomic Defects in α-Iron and Its Diluted Alloys H.J. Blythe, H.J. Blythe Department of Physics and Astronomy, The University, Sheffield, UKSearch for more papers by this authorH. Kronmüller, H. Kronmüller Max-Planck-Institut für Metallforschung, Stuttgart, GermanySearch for more papers by this authorA. Seeger, A. Seeger Max-Planck-Institut für Metallforschung, Stuttgart, GermanySearch for more papers by this authorF. Walz, F. Walz Max-Planck-Institut für Metallforschung, Stuttgart, GermanySearch for more papers by this author H.J. Blythe, H.J. Blythe Department of Physics and Astronomy, The University, Sheffield, UKSearch for more papers by this authorH. Kronmüller, H. Kronmüller Max-Planck-Institut für Metallforschung, Stuttgart, GermanySearch for more papers by this authorA. Seeger, A. Seeger Max-Planck-Institut für Metallforschung, Stuttgart, GermanySearch for more papers by this authorF. Walz, F. Walz Max-Planck-Institut für Metallforschung, Stuttgart, GermanySearch for more papers by this author First published: 26 October 2000 https://doi.org/10.1002/1521-396X(200010)181:2 3.0.CO;2-8Citations: 41AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstracten This review presents a comprehensive survey on intensive studies performed during the last decades on point defect reactions on α-iron (α-Fe) and its diluted alloys. Our intention is to give an actual account of the knowledge accumulated on this subject, as it has been obtained predominantly by means of the magnetic after-effect (MAE) spectroscopy. After a concise introduction into the theoretical and experimental fundamentals of this technique, the main concern is focused on the presentation and detailed discussion of the MAE spectra arising — after low-temperature electron (e–)- or neutron(n)-irradiation and subsequent annealing — in: (i) high-purity α-Fe and α-Fe doped with (ii) substitutional solutes (like Ni, V, Al, Cu, Ti, Be, Si, Mn, …) or (iii) interstitial solutes (like O, H, C, N). During the course of systematic annealing treatments, these respective spectra undergo dramatic variations at specific temperatures thereby revealing in great detail the underlying intrinsic reactions of the radiation-induced defects, i.e., reorientation, migration, clustering, dissolution and finally annihilation. In alloyed Fe systems the corresponding reaction sequences are even multiplied due to additional interactions between defects and solute atoms. Most valuable information concerning formation-, dissociation- and binding enthalpies of small, mixed clusters (of the type CiVk, NiVk; i, k ≥ 1) has been obtained in high-purity α-Fe base material which, after charging with C or N, had been e–-irradiated. Concerning the basic recovery mechanisms in α-Fe, two complementary results are obtained from the analysis of the various systems: (i) in high-purity and substitutionally alloyed α-Fe the recovery in Stage-III (200 K) is governed by a three-dimensionally migrating (HMI = 0.56 eV) stable interstitial (dumb-bell); (ii) following the formation and dissociation kinetics of small clusters (C1Vk, N1Vk) in interstitially alloyed α-Fe the migration enthalpy of the monovacancy must hold the following relation HMN (0.76 eV) < HMC (0.84 eV) < HMV1. These results are in clear agreement with the so-called two-interstitial model (2IM) in α-Fe – a conclusion being further substantiated by a systematic comparison with the results obtained from nonrelaxational techniques, like i.e. positron annihilation (PA), which by their authors are preferentially interpreted in terms of the one-interstitial model (1IM). Abstractde Die vorliegende Arbeit gibt einen umfassenden Überlick über die während der letzten Jahrzehnte durchgeführten, eingehenden Untersuchungen der Punktfehler-Eigenschaften in α-Eisen (α-Fe) und verdünnten Fe-Legierungen. Demgemäß ist diese Zusammenfassung gedacht als ein dem gegenwärtigen Kenntnisstand entsprechender Rechenschaftsbericht über die auf diesem Gebiet, hauptsächlich mit Hilfe der magnetischen Nachwirkungs (MNW) — Spektroskopie, gewonnenen, tiefreichenden Einsichten in diesen Problemkreis. Nach einer kurzen Einführung in die theoretischen und experimentellen Grundlagen dieser Technik gilt das Augenmerk der Darstellung und eingehenden Erörterung der — nach Tieftemperatur-Elektron(e–)- oder -Neutronen(n)-Bestrahlung und anschließender Erholung — beobachteten MNW-Spektren in (i) hochreinem α-Fe und α-Fe, das entweder mit (ii) substitutionellen (Ni, V, Al, Cu, Ti, Be, Si, Mn, …) oder (iii) interstitiellen (O, H, C, N) Fremdatomen beladen wurde. Während der thermischen Erholung erfahren die Spektren an bestimmten Temperaturen charakteristische Veränderungen, die weitreichende Rückschlüsse über die jeweils zugrundeliegenden Reaktionen der bestrahlungsinduzierten Gitterfehler ermöglichen, wie z. B.: Umorientierung, Wanderung, Bildung und Auflösung von Komplexen und schließliche Annihilation mit Anti-Defekten. In Fremdatom-beladenem α-Fe treten entsprechende Reaktionen — infolge Wechselwirkung zwischen intrinsischen Gitterfehlern und Fremdatomen — in verstärktem Umfang auf. Wertvolle Kenntnisse über die Enthalpien der Bildung, Auflösung und Bindung kleiner, gemischter Komplexe (der Art CiVk, NiVk; i, k ≥ 1) wurden an hochreinem, gezielt mit C und N beladenem α-Fe nach Tieftemperatur-Elektronenbestrahlung gewonnen. Hinsichtlich des grundlegenden Erholungsverhaltens in α-Fe wurden zwei entscheidende Ergebnisse erzielt: (i) in hochreinem, sowie mit substitutionellen Fremdatomen beladenem α-Fe erfolgt die Erholung in Stufe III (200 K) durch dreidimensionale Wanderung eines stabilen, intrinsischen Zwischengitteratoms (Hantel); (ii) Die Analyse der Bildungs- und Wieder-Auflösungskinetik kleiner Komplexe (C1Vk, N1Vk) in interstitiell beladenem α-Fe ergibt, daß die Wanderungsenthalpie der Einfachleerstelle folgender Bedingungen genügen muß: HMN (0.76 eV) < HMC (0.84 eV) < HMV1. Diese Ergebnisse stehen in vollkommener Übereinstimmung mit dem sogenannten Zwei-Zwischengitteratom-Modell in α-Fe — eine Feststellung, die noch weiter erhärtet wird durch die Gegenüberstellung der mit Nicht-Relaxationsverfahren, z. B. der Positronenannihilation, gewonnenen Ergebnisse, die jedoch von den jeweiligen Autoren vorzugsweise im Rahmen des Ein-Zwischengitteratom-Modells gedeutet werden. References [1] A. Seeger, Proc. Roy. Soc. (London) A 371 165 (1980). 10.1098/rspa.1980.0074 Web of Science®Google Scholar [2] A. Seeger, P. Schiller, and H. Kronmüller, Phil. Mag. 5 853 (1960). 10.1080/14786436008241223 CASWeb of Science®Google Scholar [3] H. Kronmüller, A. Seeger, and P. Schiller, Z. Naturf. 15a 740 (1960). CASGoogle Scholar [4] A. Seeger, H. Kronmüller, P. Schiller, and H. Jäger, in: Radiation Damage in Solids, Scuola Intern. De Fisica, E. Fermi XVIII Corso, Academic Press, New York/London 1962 (p. 809). Google Scholar [5] A. Seeger, H. Kronmüller, and H. Rieger, Z. angew. Physik 18 377 (1965). CASWeb of Science®Google Scholar [6] A. Seeger, in: Magnetismus, Struktur und Eigenschaften magnetischer Festkörper, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1967 (p. 160). Google Scholar [7] F. Walz and H.J. Blythe, Cryst. Latt. Def. and Amorph. Mater. 17 373 (1988). CASWeb of Science®Google Scholar [8] F. Walz, phys. stat. sol. (a) 8 125 (1971); Appl. Phys. 3 313 (1974); phys. stat. sol. (a) 82, 179 (1984); phys. stat. sol. (a) 147 237 (1995). 10.1002/pssa.2210080112 CASWeb of Science®Google Scholar [9] P.R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York 1969. Google Scholar [10] IMSL, FORTRAN Subroutines for Mathematical Applications, 2500 Park West Tower One, Houston, Texas 77042-3020, USA. Google Scholar [11] B. Hohler, Doctoral Thesis, University of Stuttgart, 1979. Google Scholar [12] F. Walz and H.J. Blythe, Proc. Internat. Conf. Vacancies and Interstitials in Metals and Alloys, Berlin 1986, Eds. C. Abromeit and H. Wollenberger, Mater. Sci. Forum 15/18 697 (1987). 10.4028/www.scientific.net/MSF.15-18.697 Google Scholar [13] H. Kronmüller, in: Moderne Probleme der Metallphysik, Vol. 2, Ed. A. Seeger, Springer-Verlag, Berlin/Heidelberg/New York 1966. Google Scholar [14] H. Kronmüller, in: Vacancies and Interstitials in Metals, Eds. A. Seeger, D. Schumacher, W. Schilling, and J. Diehl, North-Holland Publ. Co., Amsterdam 1970 (p. 667). Google Scholar [15] H. Kronmüller, Nachwirkung in Ferromagnetika, Springer-Verlag, Berlin/Heidelberg/New York 1968. Google Scholar [16] D. Dautreppe, in: Studies in Radiation Effects, Ed. G. J. Dienes, Ser. A, Physical and Chemical, Gordon and Breach, New York/London 1968. Google Scholar [17] W. Rayleigh, Phil. Mag. 23 225 (1887). 10.1080/14786448708628000 Google Scholar [18] J.A. Ewing, Proc. Roy. Soc. 46 269 (1889). 10.1098/rspl.1889.0033 Google Scholar [19] G. Richter, Ann. Phys. 29 605 (1937). 10.1002/andp.19374210705 CASGoogle Scholar [20] H. Kronmüller and F. Walz, Phil. Mag. B 42 433 (1980). 10.1080/01418638008221886 Web of Science®Google Scholar [21] F. Walz, V.A.M. Brabers, S. Chikazumi, H. Kronmüller, and M.O. Rigo, phys. stat. sol. (b) 110 471 (1982). 10.1002/pssb.2221100212 CASWeb of Science®Google Scholar [22] F. walz and H. Kronmüller, phys. stat. sol. (b) 160, 661 (1990); 181 485 (1994). 10.1002/pssb.2221600227 CASWeb of Science®Google Scholar [23] F. Walz, phys. stat. sol. (a) 40 455 (1977). 10.1002/pssa.2210400211 CASWeb of Science®Google Scholar [24] F. Walz and H.J. Blythe, Appl. Phys. A 34 57 (1984). 10.1007/BF00617575 Web of Science®Google Scholar [25] A. Hofmann, P. Schüle, N. Moser, H. Kronmüller, H. Jäger, and F. Dworschak, Physica C 153/155 341 (1988). 10.1016/0921-4534(88)90623-5 Web of Science®Google Scholar [26] N. Moser, A. Hofmann, P. Schüle, R. Henes, and H. Kronmüller, Z. Phys. B 71 37 (1988). 10.1007/BF01310841 CASWeb of Science®Google Scholar [27] M. Hirscher, F. Walz, and M. Weller, J. Physique IV, C7–175 (1995). Google Scholar [28] F. Walz, M. Weller, and M. Hirscher, phys. stat. sol. (a) 154 765 (1996). 10.1002/pssa.2211540230 CASWeb of Science®Google Scholar [29] S. Chikazumi, Physics of Magnetism, R. E. Krieger Publ. Co., Huntington/New York 1978. Google Scholar [30] H. Träuble, see [14] (p. 157). Google Scholar [31] H.D. Dietze, Techn. Mitt. Krupp 17 67 (1959). CASGoogle Scholar [32] E. Kröner, in: Kontinuumstheorie der Versetzungen und Eigenspannungen, Springer-Verlag, Berlin/Göttingen/Heidelberg 1958. Google Scholar [33] J.L. Snoek, Physica 8 711 (1941). 10.1016/S0031-8914(41)90517-7 CASWeb of Science®Google Scholar [34] L. Néel, J. Phys. Rad. 12, 339 (1951); 13 249 (1952). 10.1051/jphysrad:01951001203033900 Web of Science®Google Scholar [35] G. De Vries, P.W. van Geest, R. van Gersdorf, and G.W. Rathenau, Physica 25 1131 (1959). 10.1016/0031-8914(59)90031-X CASWeb of Science®Google Scholar [36] A.J. Bosman, Doctoral Thesis, Amsterdam, 1960. Google Scholar [37] H. Kronmüller, Appl. Phys. 4 317 (1974). 10.1007/BF00928386 Web of Science®Google Scholar [38] A. Seeger and P. Schiller, in: Physical Acoustics, Vol. 3A, Ed. P. W. Mason, Academic Press, New York/London 1966 (p. 361). Google Scholar [39] A. Kuke, H. Kronmüller, and H. Schultz, phys. stat. sol. (a) 25 523 (1974). 10.1002/pssa.2210250219 CASWeb of Science®Google Scholar [40] H. Wilde, Arch. Elektr. Übertrager 6 354 (1952). Google Scholar [41] D. Gerstner and E. Kneller, Z. Metallk. 52 426 (1961). CASWeb of Science®Google Scholar [42] H. Rieger, Z. Metallk. 4 229 (1963). Google Scholar [43] E. Balthesen, phys. stat. sol. 3 2321 (1963). 10.1002/pssb.19630031215 CASWeb of Science®Google Scholar [44] P. Moser, Mem. Sci. Rev. Met. 63 431 (1966). CASWeb of Science®Google Scholar [45] H.B. Aaron, M. Wutting, and H.K. Birnbaum, Acta Met. 16 269 (1968). 10.1016/0001-6160(68)90012-6 CASWeb of Science®Google Scholar [46] H. Knöll, Doctoral Thesis, Technische Hochschule Aachen, Bericht der Kernforschungsanlage Jülich, Nr. 864 (1972). Google Scholar [47] H.J. Blythe, phys. stat. sol. (a) 92 193 (1985). 10.1002/pssa.2210920118 CASWeb of Science®Google Scholar [48] F. Walz, phys. stat. sol. (a) 134 509 (1992). 10.1002/pssa.2211340220 Web of Science®Google Scholar [49] E. Kneller, Ferromagnetismus, Springer-Verlag 1962 (p. 618). Google Scholar [50] Jahnke-Emde-Lösch, Tafeln höherer Funktionen, Teubner, Stuttgart 1966. Google Scholar [51] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Applied Mathematics Series, vol. 55, National Bureau of Standards, 1972. Google Scholar [52] C. Erginsoy, G.H. Vineyard, and A. Englert, Phys. Rev. 133 A595 (1964). 10.1103/PhysRev.133.A595 Web of Science®Google Scholar [53] R.A. Johnson, Phys. Rev. 134 A1329 (1964). 10.1103/PhysRev.134.A1329 CASWeb of Science®Google Scholar [54] P.H. Dederichs, C. Lehmann, H.R. Schober, A. Scholz, and R. Zeller, J. Nucl. Mater. 69/70 176 (1978). 10.1016/0022-3115(78)90243-X Web of Science®Google Scholar [55] P. Ehrhart, K. Robrock, and H.R. Schober, in: Physics of Radiation Effects in Crystals, Eds. R. A. Johnson and A. N. Orlov, Elsevier Science Publ. B. V., 1986 (p. 3). Google Scholar P. Ehrhardt, in: Landoldt-Börnstein (Neue Serie), Bd. 25: Atomare Fehlstellen in Kristallen, 1991 (p. 88). Google Scholar [56] J.M. Harder and D.J. Bacon, Phil. Mag. A 54 651 (1986). 10.1080/01418618608244024 CASWeb of Science®Google Scholar [57] A.H. Foster, J.M. Harder, and D.J. Bacon, see [12] (p. 849). Google Scholar [58] J.M. Harder and D.J. Bacon, Phil. Mag. A 58 165 (1988). 10.1080/01418618808205181 CASWeb of Science®Google Scholar [59] G.J. Ackland, D.J. Bacon, A.F. Calder, and T. Harry, Phil. Mag. A 75 713 (1997). 10.1080/01418619708207198 CASWeb of Science®Google Scholar [60] Yu.N. Osetsky, A. Serra, V. Priego, F. Gao, and D.J. Bacon, Mater. Res. Soc. Symp. Proc. 527 49 (1998). 10.1557/PROC-527-49 CASWeb of Science®Google Scholar [61] M.W. Finnis and J.E. Sinclair, Phil. Mag. A 50 45 (1984). 10.1080/01418618408244210 CASWeb of Science®Google Scholar [62] H. Kronmüller and H.-E. Schaefer, phys. stat. sol. (b) 66 607 (1974). 10.1002/pssb.2220660224 Web of Science®Google Scholar [63] H.-E. Schaefer and H. Kronmüller, phys. stat. sol. (b) 67 63 (1975). 10.1002/pssb.2220670104 CASWeb of Science®Google Scholar [64] M.V. Klein, phys. stat. sol. 2 881 (1962). 10.1002/pssb.19620020708 Web of Science®Google Scholar [65] P. Moser, Internal Friction and Ultrasonic Attenuation in Solids, University of Tokyo Press, 1977 (p. 63). Google Scholar [66] J.R. Beeler and R.A. Johnson, Phys. Rev. 156 677 (1967). 10.1103/PhysRev.156.677 CASWeb of Science®Google Scholar [67] R.A. Johnson and A.C. Damask, Acta Met. 12 443 (1964). 10.1016/0001-6160(64)90014-8 CASWeb of Science®Google Scholar [68] R.A. Johnson, G.J. Dienes, and A.C. Damask, Acta Met. 12 1215 (1964). 10.1016/0001-6160(64)90105-1 CASWeb of Science®Google Scholar [69] H.W. King, J. Mater. Sci. 1 79 (1966). 10.1007/BF00549722 CASWeb of Science®Google Scholar [70] M.L. Swanson and F. Maury, Canad, J. Phys. 53 1117 (1975). 10.1139/p75-143 CASWeb of Science®Google Scholar [71] M.L. Swanson, L.M. Howe, and A.F. Quenneville, Proc. Conf. Fundamental Aspects of Radiation Damage in Metals, Gatlinburg, 1975 (p. 318). Google Scholar [72] P. Vigier, Doctoral Thesis, Grenoble (1966); Report CEA-R3280, C. E. N. Grenoble (France) 1968. Google Scholar [73] H.J. Blythe, F. Dworschak, I.M. Richardson, and F. Walz, phys. stat. sol. (a) 69 K97 (1982). 10.1002/pssa.2210690166 CASWeb of Science®Google Scholar [74] F. Walz, H.J. Blythe, and F. Dworschak, phys. stat. sol. (a) 75 235 (1982). 10.1002/pssa.2210750126 Web of Science®Google Scholar [75] R.A. Johnson, J. Phys. F. 3 295 (1973). 10.1088/0305-4608/3/2/004 CASWeb of Science®Google Scholar [76] R.A. Johnson and N.Q. Lam, J. Nucl. Mat. 69/70 424 (1978). 10.1016/0022-3115(78)90258-1 Web of Science®Google Scholar [77] G.J. Dienes and G.H. Vineyard, Radiation Effects in Solids, Interscience Publ., Inc., New York 1957. Google Scholar [78] A. Seeger, in: Radiation Damage in Solids, International Atomic Energy Agency, Vienna, Vol. 1, 1962 (p. 101). Google Scholar [79] J. Diehl, in: Moderne Probleme der Metallphysik, Vol. 1, Ed. A. Seeger, Springer-Verlag, Berlin/Heidelberg/New York 1965 (p. 227). Google Scholar [80] A.C. Damask and G.J. Dienes, Point Defects in Metals, Gordon and Breach, New York/London 1971. Google Scholar [81] H.G. van Bueren, Z. Metallk. 46 272 (1955). CASGoogle Scholar [82] M.W. Thompson, Phil. Mag. 5 278 (1960). 10.1080/14786436008235842 CASWeb of Science®Google Scholar [83] W. Mensch and J. Diehl, phys. stat. sol. (a) 43, K175 (1977); W. Mensch, J. Diehl, and M. Weller, Verh. DPG (VI), 12 243 (1977). 10.1002/pssa.2210430258 CASWeb of Science®Google Scholar [84] C. Minier-Cassayre, Doctoral Thesis, University of Grenoble, 1965. Google Scholar [85] G. Burger, K. Isebeck, R. Kerler, J. Völkl, H. Wenzl, H.H. Kuhlmann, and H. Schultz, Phys. Lett. 20 470 (1966). 10.1016/0031-9163(66)90956-5 CASWeb of Science®Google Scholar [86] H. Bilger, V. Hivert, J. Verdone, J.L. Leveque, and J.C. Soulie, see [14] (p. 751). Google Scholar [87] S. Takaki, J. Fuss, H. Kugler, U. Dedek, and H. Schultz, Rad. Eff. 79 87 (1983). 10.1080/00337578308207398 CASWeb of Science®Google Scholar [88] P. Moser and D. Dautreppe, J. Phys. Radium 24 516 (1963). 10.1051/jphys:01963002407051601 CASWeb of Science®Google Scholar [89] E. Balthesen, K. Isebeck, and H. Wenzl, phys. stat. sol. 8 603 (1965). 10.1002/pssb.19650080220 CASWeb of Science®Google Scholar [90] J. Diehl, W. Mensch, and M. Weller, phys. stat. sol. (a) 43 K179 (1977). 10.1002/pssa.2210430259 CASWeb of Science®Google Scholar [91] W. Mensch, Doctoral Thesis, University of Stuttgart, 1986. Google Scholar [92] L.H. Dunleavy and H.J. Blythe, phys. stat. sol. (a) 43 K87 (1977). 10.1002/pssa.2210430163 CASWeb of Science®Google Scholar [93] L.H. Dunleavy and H.J. Blythe, phys. stat. sol. (a) 56 237 (1979). 10.1002/pssa.2210560126 CASWeb of Science®Google Scholar [94] L.H. Dunleavy and H.J. Blythe, phys. stat. sol. (a) 49, 609 (1978); 56 669 (1979). 10.1002/pssa.2210560234 CASWeb of Science®Google Scholar [95] J. Verdone, P. Peretto, P. Moser, D. Dautreppe, and J. Verdier, C. R. Acad. Sci. (Paris) 260 5209 (1965). CASWeb of Science®Google Scholar [96] H.-E. Schaefer, D. Butteweg, and W. Dander, Proc. Internat. Conf. Fundamental Aspects of Radiation Damage in Metals, Eds. M. T. Robinson and F. W. Young, Jr., US ERDA Conf. 751006, Oak-Ridge/Tennessee (USA), Vol. 1, 1975 (p. 463). Google Scholar [97] F. Walz, H. Schreyer, and H. Kronmüller, phys. stat. sol. (a) 43 K81 (1977). 10.1002/pssa.2210430162 CASWeb of Science®Google Scholar [98] H.J. Blythe, F. Walz, and F. Dworschak, phys. stat. sol. (a) 63 K195 (1981). 10.1002/pssa.2210630262 CASWeb of Science®Google Scholar [99] F. Walz, unpublished results. Google Scholar [100] B. Schwendemann, H. Kronmüller, and F. Walz, Cryst. Latt. Def. and Amorph. Mater. 11 1 (1985). CASWeb of Science®Google Scholar [101] M. Hirscher, B. Schwendemann, and H. Kronmüller, Cryst. Latt. Def. and Amorph. Mater. 11 245 (1985). CASWeb of Science®Google Scholar [102] M. Hirscher, W. Frank, H. Kronmüller, and B. Schwendemann, Cryst. Latt. Def. and Amorph. Mater. 14 73 (1987). CASWeb of Science®Google Scholar [103] F. Maury, M. Biget, P. Vajda, A. Lucasson, and P. Lucasson, Phys. Rev. B 14 5303 (1976). 10.1103/PhysRevB.14.5303 CASWeb of Science®Google Scholar [104] M. Hirscher, B. Schwendemann, and H. Kronmüller, Appl. Phys. A 41 191 (1986). 10.1007/BF00616839 Web of Science®Google Scholar [105] H.J. Blythe, F. Walz, and H. Kronmüller, phys. stat. sol. (a) 81 227 (1984). 10.1002/pssa.2210810124 CASWeb of Science®Google Scholar [106] J. Verdone, W. Chambron, and P. Moser, phys. stat. sol. (b) 61 K41 (1974). 10.1002/pssb.2220610144 CASWeb of Science®Google Scholar [107] W. Chambron, J. Verdone, and P. Moser, see [96] (p. 261). Google Scholar [108] V. Hivert, R. Pichon, H. Bilger, J. Verdone, D. Dautreppe, and P. Moser, J. Phys. Chem. Sol. 31 1843 (1970). 10.1016/0022-3697(70)90176-9 CASWeb of Science®Google Scholar [109] M. Weller and J. Diehl, in: Proc. 3rd Internat. Conf. Internal Friction and Ultrasonic Attenuation in Solids, Ed. C. C. Smith, Pergamon Press, Oxford/New York 1980 (p. 181). Google Scholar [110] M. Weller and J. Diehl, in: Point Defects and Defect Interactions in Metals, Proc. Yamada Conf.V, Eds. J. I. Takamura, M. Doyama, and M. Kiritani, University of Tokyo Press, Tokyo 1982 (p. 417). Google Scholar [111] J. Wolf and H. Kronmüller, see [12] (p. 225). Google Scholar [112] J. Wolf, Doctoral Thesis, University of Stuttgart, 1986. Google Scholar [113] W. Schilling, G. Burger, K. Isebeck, and H. Wenzl, see [14] (p. 225). Google Scholar [114] H. Schultz, in: Ultra-High-Purity Base Metals, Proc. UHPM-94, Eds. K. Abiko, K. Hirosawa, and S. Takaki, The Japan Institute of Metals, Sendai 1995 (p. 223). Google Scholar H. Schultz, in: Landoldt-Börnstein (Neue Serie), Bd. 25: Atomare Fehlstellen in Kristallen, 1991 (p. 115). Google Scholar [115] A. Seeger, in: Ultra-High-Purity Metals, Proc. UHPM-94, Ed. K. Abiko, K. Hirosawa, and S. Takaki, The Japan Institute of Metals, Sendai 1995 (p. 27). Google Scholar [116] W. Decker, J. Diehl, A. Dunlop, W. Frank, H. Kronmüller, W. Mensch, H.-E. Schaefer, B. Schwendemann, A. Seeger, H.-P. Stark, F. Walz, and M. Weller, phys. stat. sol. (a) 52 239 (1979). 10.1002/pssa.2210520126 CASWeb of Science®Google Scholar [117] W. Frank and A. Seeger, see [12] (p. 57). Google Scholar [118] A. Seeger, in: Ultra-High Purity Base Metals, Proc. UHPM-94, Ed. K. Abiko et al., The Japan Inst. of Metals, Sendai 1995 (p. 27). Google Scholar [119] H.H. Neely and D.W. Keefer, phys. stat. sol. 24 217 (1967). 10.1002/pssb.19670240121 CASWeb of Science®Google Scholar [120] A. Sato and M. Meshii, phys. stat. sol. (a) 22 253 (1974). 10.1002/pssa.2210220129 CASWeb of Science®Google Scholar [121] H.J. Blythe and H. Kronmüller, phys. stat. sol. (a) 4 603 (1971). 10.1002/pssa.2210040304 CASWeb of Science®Google Scholar [122] H.J. Blythe, phys. stat. sol. (a) 17 293 (1973). 10.1002/pssa.2210170133 CASWeb of Science®Google Scholar [123] H.J. Blythe, phys. stat. sol. (a) 20 77, 619 (1973). 10.1002/pssa.2210200105 CASWeb of Science®Google Scholar [124] G.P. Seidel, phys. stat. sol. 25 175 (1968). 10.1002/pssb.19680250117 CASWeb of Science®Google Scholar [125] J. Diehl and G.P. Seidel, Radiation Damage in Reactor Materials, Vol. 1, IAEA, Vienna 1969 (p. 187). Google Scholar [126] G. Hettich, H. Mehrer, and K. Maier, Scripta Met. 11 795 (1977). 10.1016/0036-9748(77)90078-3 CASWeb of Science®Google Scholar [127] Y. Iijima, K. Kimura, and K. Hirado, Acta Met. 36 2811 (1988). 10.1016/0001-6160(88)90127-7 CASWeb of Science®Google Scholar [128] M. Lübbehusen and H. Mehrer, Acta Metall. et Mater. 38 283 (1990). 10.1016/0956-7151(90)90058-O Web of Science®Google Scholar [129] H.-E. Schaefer, K. Maier, M. Weller, D. Herlach, S. Seeger, and J. Diehl, Scripta Met. 11 803 (1977). 10.1016/0036-9748(77)90079-5 CASWeb of Science®Google Scholar [130] H.-E. Schaefer, P. Valenta, and K. Maier, Proc. 5th Internat. Conf. Positron Annihilation, Eds. R. R. Hasiguti and K. Fujiwara, Japan Institute of Metals, 1979 (p. 509). Google Scholar [131] K. Fürderer, K.P. Döring, M. Gladisch, N. Haas, D. Herlach, J. Major, H.J. Mundinger, J. Rosenkranz, W. Schäfer, L. Schimmele, M. Schmolz, W. Schwarz, and A. Seeger, see [12] (p. 125); Hyperfine Interactions 31 81 (1986). 10.1007/BF02401543 Web of Science®Google Scholar [132] A. Seeger, phys. stat. sol. (a) 167 289 (1998). 10.1002/(SICI)1521-396X(199806)167:2 3.0.CO;2-V CASWeb of Science®Google Scholar [133] L. de Schepper, J. Cornelis, G. Knuyt, J. Nihoul, and L.M. Stals, phys. stat. sol. (a) 61 341 (1980). 10.1002/pssa.2210610203 CASWeb of Science®Google Scholar [134] L. de Schepper, G. Knuyt, and L.M. Stals, phys. stat. sol. (a) 67 153 (1981). 10.1002/pssa.2210670114 CASWeb of Science®Google Scholar [135] F. Walz and H.J. Blythe, phys. stat. sol. (a) 104 343 (1987). 10.1002/pssa.2211040125 CASWeb of Science®Google Scholar [136] H. Schultz, Scripta Met. 8 721 (1974). 10.1016/0036-9748(74)90029-5 CASWeb of Science®Google Scholar [137] F.A. Lindemann, Phys. Z. 14 609 (1910). Google Scholar [138] D. Lazarus, in: Diffusion in Body-Centered Cubic Metals, ASM, Metals Park (Ohio) 1965. Google Scholar [139] H. Brooks, in: Impurities and Imperfections, ASM, Cleveland (Ohio) 1955. Google Scholar [140] R.F. Mehl, M. Swanson, and G.M. Pound, Acta Met. 9 256 (1961). 10.1016/0001-6160(61)90076-1 CASWeb of Science®Google Scholar [141] J. Verdone, P. Moser, P. Hautojärvi, J. Johansson, and A. Vehanen, see [109] (p. 205). Google Scholar [142] A. Vehanen, P. Hautojärvi, J. Johansson, J. Yli-Kauppila, and P. Moser, Phys. Rev. B 25 762 (1982). 10.1103/PhysRevB.25.762 CASWeb of Science®Google Scholar [143] P. Hautojärvi, L. Pöllanen, A. Vehanen, and J. Yli-Kauppila, J. Nucl. Mater. 114 250 (1983). 10.1016/0022-3115(83)90264-7 CASWeb of Science®Google Scholar [144] W. Frank, A. Seeger, and M. Weller, Rad. Eff. 55 111 (1981). 10.1080/00337578108225472 CASWeb of Science®Google Scholar [145] W. Frank, A. Seeger, and M. Weller, in: Positron Annihilation, Eds. P. G. Coleman, S. C. Sharma, and L. M. Diana, North-Holland Publ. Co., 1982 (p. 413). Google Scholar [146] R.A. Arndt and A.C. Damask, Acta Met. 12 341 (1964). 10.1016/0001-6160(64)90002-1 CASWeb of Science®Google Scholar [147] A. Möslang, H. Graf, G. Balzer, E. Recknagel, A. Weidinger, T. Wichert, and R.I. Grynszpan, Phys. Rev. B 27 2674 (1983). 10.1103/PhysRevB.27.2674 Web of Science®Google Scholar [148] M. Kiritani, H. Takat, K. Moriyama, and F.E. Fujita, Phil. Mag. A 40 779 (1979). 10.1080/01418617908234874 CASWeb of Science®Google Scholar [149] T. Tabata, H. Fujita, H. Ishii, K. Igaki, and M. Isshiki, Scripta Met. 14 1317 (1981). 10.1016/0036-9748(81)90090-9 Web of Science®Google Scholar [150] J. Verdone, A. Bourret, and P. Moser, Rad. Eff. 61 99 (1982). 10.1080/00337578208225738 CASWeb of Science®Google Scholar [151] M. Kiritani, in: Point Defects and Defect Interactions in Metals, Yamada Science Foundation, University of Tokyo Press, 1982 (p. 59). Google Scholar [152] F. Pleiter, C. Hohenemser, and A.R. Arends, Hyperfine Interactions 10 691 (1981). 10.1007/BF01021993 CASWeb of Science®Google Scholar [153] E. Recknagel, G. Schatz, and T. Wichert, in: Topics in Current Physics, Vol. 31, Ed. J. Christiansen, Springer-Verlag, Berlin 1983 (p. 133). Google Scholar [154] Y. Yoshida, A. Nasa, and F.E. Fujita, in: Point Defects and Defect Interactions in Metals, Yamada Science Foundation, University of Tokyo Press, 1982 (p. 199). Google Scholar [155] T. Bolze, A. Rauch, A. Schmalzbauer, G. Wallner, and J. Peisl, in: Bericht über das Arbeitstreffen des Verbandes Komplementäre Methoden und Defekte, Bad Honnef 1985 (p. 191). Google Scholar [156] G. Wallner, H. Franz, A. Rauch, A. Schmalzbauer, and J. Peisl, see [12] (p. 907). Google Scholar [157] H.J. Blythe, F. Walz, I.M. Richardson, and F. Dworschak, phys. stat. sol. (a) 69 563 (1982). 10.1002/pssa.2210690218 CASWeb of Science®Google Scholar [158] F. Walz, H.J. Blythe, and F. Dworschak, phys. stat. sol. (a) 76 267 (1983). 10.1002/pssa.2210760131 CASWeb of Science®Google Scholar [159] F. Walz and H.J. Blythe, unpublished results. Google Scholar [160] H.J. Blythe, F. Walz, and F. Dworschak, phys. stat. sol. (a) 61 K63 (1980). 10.1002/pssa.2210610155 CASWeb of Science®Google Scholar [161] H.J. Blythe, F. Walz, and H. Kronmüller, phys. stat. sol. (a) 69 237 (1982). 10.1002/pssa.2210690123 CASWeb of Science®Google Scholar [162] H.J. Blythe, F. Walz, and F. Dworschak, phys. stat. sol. (a) 74 181 (1982). 10.1002/pssa.2210740121 CASWeb of Science®Google Scholar [163] H.J. Blythe, F. Walz, and F. Dworschak, J. Magn. Magn. Mater. 41 405 (1984). 10.1016/0304-8853(84)90232-4 CASWeb of Science®Google Scholar [164] A. Rahman and H.J. Blythe, unpublished results. Google Scholar [165] P. Vigier and P. Moser, Mem. Sci. Rev. Met. 65 189 (1968). Web of Science®Google Scholar [166] P. Vigier and P. Moser, C. R. Acad. Sci. (Paris) 1 260 (1965). Google Scholar [167] P. Vigier, C. Minier-Cassayre, P. Moser, and V. Hivert, phys. stat. sol. 17 317 (1966). 10.1002/pssb.19660170136 CASWeb of Science®Google Scholar [168] J. Verdone, P. Moser, W. Chambron, J. Johansson, P. Hautojärvi, and A. Vehanen, J. Magn. Magn. Mater. 19 256 (1980). 10.1016/0304-8853(80)90617-4 Web of Science®Google Scholar [169] C. Minier-Cassayre, Doctoral Thesis, University of Grenoble, 1965. Google Scholar [170] F. Maury, A. Lucasson, P. Lucasson, P. Moser, and Y. Loreaux, J. Phys. F 15 1465 (1985). 10.1088/0305-4608/15/7/007 CASWeb of Science®Google Scholar [171] F. Maury, A. Lucasson, P. Lucasson, Y. Loreaux, and P. Moser, J. Phys. F 16 523 (1986). 10.1088/0305-4608/16/5/004 CASWeb of Science®Google Scholar [172] F. Maury, P. Lucasson, A. Lucasson, F. Faudo, and J. Bigot, J. Phys. F 17 1143 (1987). 10.1088/0305-4608/17/5/014 CASWeb of Science®Google Scholar [173] E. Bonjour, P. Vigier, and P. Moser, C. R. Acad. Sci. (Paris) 262 1149 (1966). Web of Science®Google Scholar [174] P. Hautojärvi, see [12] (p. 81). Google Scholar [175] P. Moser, C. Corbel, P. Lucasson, and P. Hautojärvi, see [12] (p. 925). Google Scholar [176] A. Möslang, E. Albert, E. Recknagel, and A. Weidinger, Hyperfine Interactions 15/16, 409 (1983); 17/19 225 (1984). 10.1007/BF02159779 Web of Science®Google Scholar [177] A. Weidinger, Hyperfine Interactions 17/19 153 (1984). 10.1007/BF02065897 Web of Science®Google Scholar [178] J. Golczewski, K. Maier, and W. Frank, phys. stat. sol. (b) 134 551 (1986). 10.1002/pssb.2221340213 CASWeb of Science®Google Scholar [179] W. Hume-Rothery, The Structure of Alloys of Iron, Pergamon Press, Oxford 1966 (p. 85). Google Scholar [180] W.A. Harrison, Electronic Structure and the Properties of Solids, W. H. Freeman and Co., San Francisco 1980. Google Scholar [181] R.C. Evans, Crystal Chemistry, 2nd ed., Cambridge University Press, London 1979. Google Scholar [182] L.S. Darken and R.W. Gurry, Physical Chemistry of Metals, McGraw-Hill Publ., New York 1953. Google Scholar [183] M. Hansen, Der Aufbau der Zweistofflegierungen, Springer-Verlag, Berlin 1936 (p.703); M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill Publ. Co., New York 1958. Google Scholar [184] J.A. Kitchener, J. O'm Bockris, M. Gleiser, and J.W. Evans, Acta Met. 1 93 (1953). 10.1016/0001-6160(53)90013-3 CASWeb of Science®Google Scholar [185] J.D. Fast, Metaux. Corros. Inds. 36 383, 431 (1961). Google Scholar [186] J.D. Fast, Gases in Metals, Philips Technical Library, MacMillan Press, Ltd., London 1976 (p. 216). Google Scholar [187] W. Frank, H.J. Engell, and A. Seeger, Z. Metallk. 58 452 (1967). CASWeb of Science®Google Scholar [188] W. Frank, H.J. Engell, and A. Seeger, Trans. AIME 242 749 (1968). CASWeb of Science®Google Scholar [189] E. Fromm and E. Gebhardt (Eds)., Gase in Metallen, Springer-Verlag, Berlin/Heidelberg/New York 1976. Google Scholar [190] O. Kubaschewski, Iron-Binary Phase Diagrams, Springer-Verlag, 1982. Google Scholar [191] R. Lachenmann, Diploma Thesis, University of Stuttgart, 1968. Google Scholar [192] M. Földeaki, M. Stefan, L. Köszegi, and E. Kisdi-Koszo, J. Magn. Magn. Mater. 19 290 (1980). 10.1016/0304-8853(80)90615-0 CASWeb of Science®Google Scholar [193] R.B. McLellan and C.G. Harkins, Mater. Sci. Eng. 18 5 (1975). 10.1016/0025-5416(75)90069-5 CASWeb of Science®Google Scholar [194] H. Kronmüller, in: Hydrogen in Metals, Eds. G. Alefeld and J. Völkl, Topics in Physics, Vol. 28, Springer-Verlag, Berlin/Heidelberg/New York, 1978 (p. 289). Google Scholar [195] W. Heller, Acta Met. 9 600 (1961). 10.1016/0001-6160(61)90165-1 CASWeb of Science®Google Scholar [196] R. Gibala, Tans. AIME 239 1574 (1967). CASWeb of Science®Google Scholar [197] J.J. Au and H.K. Birnbaum, Script Met. 7 595 (1973). 10.1016/0036-9748(73)90221-4 CASWeb of Science®Google Scholar [198] J.J. Au and H.K. Birnbaum, Acta Met. 26 1105 (1978). 10.1016/0001-6160(78)90138-4 CASWeb of Science®Google Scholar [199] H. Steeb and H. Kronmüller, phys. stat. sol. (a) 16 K175 (1973). 10.1002/pssa.2210160261 CASWeb of Science®Google Scholar [200] H. Kronmüller, Appl. Phys. 4 317 (1974). 10.1007/BF00928386 Web of Science®Google Scholar [201] H. Kronmüller, H. Steeb, and N. König, Il Nuovo Cimento 33 205 (1976). 10.1007/BF02722488 Web of Science®Google Scholar [202] R. Martinez, F. Walz, and H. Kronmüller, Appl. Phys. 7 107 (1975). 10.1007/BF00884219 CASWeb of Science®Google Scholar [203] K. Vetter, H. Steeb, and H. Kronmüller, in: Proc. 2nd Internat. Congr. In Metals, nr. 2C5, Paris, 1977. Google Scholar [204] T.S. Kê, H. Kronmüller, A. Seeger, and Z.Q. Sun, Proc. 3rd Internat. Conf. Effects of Hydrogen on Behaviour of Metals, Wyoming (USA), 1980 (p. 261). Google Scholar [205] F. Walz and H. Matsui, unpublished results. Google Scholar [206] A. Seeger and H. Wüthrich, Il Nuovo Cimento 33B 38 (1976). 10.1007/BF02722472 CASWeb of Science®Google Scholar [207] J.F. Dufresne, A. Seeger, P. Groh, and P. Moser, phys. stat. sol. (a) 36 579 (1976). 10.1002/pssa.2210360218 CASWeb of Science®Google Scholar [208] I.G. Ritchie, J.P. Dufresne, and P. Moser, in: Internal Friction and Ultrasonic Attenuation in Solids, Eds. R. R. Hasiguti and N. Mikoshiba, University of Tokyo Press, 1977 (p. 701). Google Scholar [209] V. Hivert, P. Groh, W. Frank, J. Ritchie, and P. Moser, phys. stat. sol. (a) 46 89 (1978). 10.1002/pssa.2210460110 CASWeb of Science®Google Scholar [210] M. Hirscher, Doctoral Thesis, University of Stuttgart, 1987. Google Scholar [211] A.S. Nowick and B.S. Berry, Anelastic Relaxations in Crystalline Solids, Academic Press, New York/London, 1972. Google Scholar [212] J. Diehl, M. Weller, and W. Mensch, see [110] (p. 413). Google Scholar [213] F. Walz, H.J. Blythe, and H. Kronmüller, phys. stat. sol. (a) 61 607 (1980). 10.1002/pssa.2210610235 CASWeb of Science®Google Scholar [214] F. Walz, H.J. Blythe, and M. Földeaki, phys. stat. sol. (a) 89 581 (1985). 10.1002/pssa.2210890219 CASWeb of Science®Google Scholar [215] T. Hejnal and J. Kunze, Czech. J. Phys. B 24 951 (1974). 10.1007/BF01591046 Web of Science®Google Scholar [216] F. Walz, M. Weller, and M. Hirscher, phys. stat. sol. (a) 154 765 (1996). 10.1002/pssa.2211540230 CASWeb of Science®Google Scholar [217] P. Vigier, V. Hivert, A. Bourret, and P. Moser, phys. stat. sol. 17 K37 (1966). 10.1002/pssb.19660170158 CASWeb of Science®Google Scholar [218] M. Wuttig, J.T. Stanley, and K. Birnbaum, phys. stat. sol. 27 701 (1968). 10.1002/pssb.19680270227 CASWeb of Science®Google Scholar [219] F. Walz, M. Földeaki, H. Kronmüller, and R. Munk, Acta Met. 31 223 (1983). 10.1016/0001-6160(83)90099-8 CASWeb of Science®Google Scholar [220] F. Walz and H.J. Blythe, phys. stat. sol. (a) 104 343 (1987). 10.1002/pssa.2211040125 CASWeb of Science®Google Scholar [221] F. Walz, H.J. Blythe, and H. Kronmüller, Rad. Eff. and Def. in Solids 116 339 (1991). 10.1080/10420159108220740 Web of Science®Google Scholar [222] H.J. Blythe and L.H. Dunleavy, phys. stat. sol. (a) 49 609 (1978). 10.1002/pssa.2210490224 CASWeb of Science®Google Scholar [223] M. Weller, J. Diehl, and W. Mensch, phys. stat. sol. (a) 60 93 (1980). 10.1002/pssa.2210600112 CASWeb of Science®Google Scholar [224] O. Seydel, G. Frohberg, and H. Wever, phys. stat. sol. (a) 144 69 (1994). 10.1002/pssa.2211440108 CASWeb of Science®Google Scholar [225] J.R.G. da Silva and R.B. McLellan, Mater. Sci. Eng. 26 83 (1976). 10.1016/0025-5416(76)90229-9 CASWeb of Science®Google Scholar [226] M. Mondino and A. Seeger, Scripta Met. 11 817 (1977). 10.1016/0036-9748(77)90081-3 CASWeb of Science®Google Scholar [227] A.C. Damask, in: Diffusion in Body-Centered Metals, ASM, Metals Park (Ohio) 1965 (p. 317). Google Scholar [228] J.T. Stanley, see [227] (p. 349). Google Scholar [229] R. Beeler, in: Interatomic Potentials and Simulation of Lattice Defects, Eds. P. C. Gehlen, J. R. Beeler, and R. I. Jaffee, Plenum Press, New York, 1972 (p. 339). Google Scholar [230] C. Corbel, Doctoral Thesis, Report CEA-R-5334, C. E. N. Saclay, 91191 Gif sur Yvette, 1986. Google Scholar [231] G. Wallner, H. Franz, R. Rauch, A. Schmalzbauer, and J. Peisl, Mater. Res. Soc. Symp. Proc. 138 35 (1989). 10.1557/PROC-138-35 Web of Science®Google Scholar [232] M.J. Puska and R.M. Nieminen, J. Phys. F 13 333 (1983). 10.1088/0305-4608/13/2/009 CASWeb of Science®Google Scholar [233] F. Walz, unpublished results. Google Scholar Citing Literature Volume181, Issue2October 2000Pages 233-345 ReferencesRelatedInformation
Referência(s)