Artigo Revisado por pares

On the Convolution and the Laplace Transformation in the Space of Beurling‐Gevrey Tempered Ultradistributions

1992; Wiley; Volume: 158; Issue: 1 Linguagem: Inglês

10.1002/mana.19921580109

ISSN

1522-2616

Autores

R. D. Carmichael, Stevan Pilipović,

Tópico(s)

Approximation Theory and Sequence Spaces

Resumo

Mathematische NachrichtenVolume 158, Issue 1 p. 119-131 Article On the Convolution and the Laplace Transformation in the Space of Beurling-Gevrey Tempered Ultradistributions R. Carmichael, R. Carmichael Department of Mathematics and Computer Science Wake Forest University Winston-Salem/North Carolina 27109 U.S.A. Winston-SalemSearch for more papers by this authorS. Pilipović, S. Pilipović Institute of Mathematics University of Novi Sad Dr. Ilije Duričića 4 21000 Novi Sad Yugoslavia Novi SadSearch for more papers by this author R. Carmichael, R. Carmichael Department of Mathematics and Computer Science Wake Forest University Winston-Salem/North Carolina 27109 U.S.A. Winston-SalemSearch for more papers by this authorS. Pilipović, S. Pilipović Institute of Mathematics University of Novi Sad Dr. Ilije Duričića 4 21000 Novi Sad Yugoslavia Novi SadSearch for more papers by this author First published: 1992 https://doi.org/10.1002/mana.19921580109Citations: 9AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 A. Kamiński, On convolutions products and Fourier transformations, Bull. Acad. Polon. Sci. Math. Astronom. Phys. XXV, 4 (1977) 369–374 Google Scholar 2 H. Komatsu, Ultradistributions I, Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 20 (1973) 25–105 Web of Science®Google Scholar 3 H. J. Petzsche, Generalized functions and the boundary values of holomorphic functions, J. Fac. Sci. Univ. Tokyo, Sec. IA Math. 31 (1984) 391–431 Google Scholar 4 S. Pilipović, Hilbert Transformation of Beurling Ultradistributions, Rend. Sem. Math. Univ. Padova, 77 (1987) 1–13 Google Scholar 5 S. Pilipović, Tempered Ultradistributions, Bolletino U. M. 1. (7) 2-B, (1988) 235–251 Google Scholar 6 S. Pilipović, Some operations in Σ'α, α 1/2, Radovi Mat. 5 (1989) 53–62 Google Scholar 7 S. Pilipović, Operations in the space s'({Mp} x,q), Comment. Math. Univ. St. Pauli 34 (1985) 135–148 Google Scholar 8 S. Pilipović, On the convolution in the spaces of Beurling ultradistributions, Comment. Math. Univ. St. Pauli (to appear) Google Scholar 9 S. Pilipović, Beurling-Gevrey tempered ultradistributions as boundary values, Portugaliae Math. (to appear) Google Scholar 10 V. S. Vladimirov, Generalized Functions in Mathematical Physics, Mir, Moscow 1979 Google Scholar Citing Literature Volume158, Issue11992Pages 119-131 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX