Artigo Revisado por pares

Solar cell efficiency tables (version 15)

2000; Wiley; Volume: 8; Issue: 1 Linguagem: Inglês

10.1002/(sici)1099-159x(200001/02)8

ISSN

1099-159X

Autores

Martin A. Green, Keith Emery, David L. King, Sanekazu Igari,

Tópico(s)

solar cell performance optimization

Resumo

Progress in Photovoltaics: Research and ApplicationsVolume 8, Issue 1 p. 187-195 Research Article Solar cell efficiency tables (version 15) Martin A. Green, Corresponding Author Martin A. Green Photovoltaics Special Research Centre, University of New South Wales, Sydney, NSW 2052, AustraliaPhotovoltaics Special Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.===Search for more papers by this authorKeith Emery, Keith Emery National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, USASearch for more papers by this authorDavid L. King, David L. King Division 6224, Sandia National Laboratories, 1515 Eubank Street, Albuquerque, NM 87185, USASearch for more papers by this authorSanekazu Igari, Sanekazu Igari Japan Quality Assurance Organization, Solar Techno Center, Solar Cell Test Research Division, HIC Bldg. 2F, 4598 Murakushi-Cho, Hamamatsu-shi, Shizuoka-ken, 431-1207, JapanSearch for more papers by this author Martin A. Green, Corresponding Author Martin A. Green Photovoltaics Special Research Centre, University of New South Wales, Sydney, NSW 2052, AustraliaPhotovoltaics Special Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.===Search for more papers by this authorKeith Emery, Keith Emery National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, USASearch for more papers by this authorDavid L. King, David L. King Division 6224, Sandia National Laboratories, 1515 Eubank Street, Albuquerque, NM 87185, USASearch for more papers by this authorSanekazu Igari, Sanekazu Igari Japan Quality Assurance Organization, Solar Techno Center, Solar Cell Test Research Division, HIC Bldg. 2F, 4598 Murakushi-Cho, Hamamatsu-shi, Shizuoka-ken, 431-1207, JapanSearch for more papers by this author First published: 24 February 2000 https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1 3.0.CO;2-1Citations: 43AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since July 1999 are briefly described. Progress since Version 1 of these Tables, published in January 1993, is also briefly summarized. Copyright © 2000 John Wiley & Sons, Ltd. REFERENCES 1M. A. Green and K. Emery, ‘Solar cell efficiency tables’, Progr. Photovolt., 1, 25–29 (1993). 10.1002/pip.4670010104 CASGoogle Scholar 2M. A. Green and K. Emery, ‘Solar cell efficiency tables (version 2)’, Progr. Photovolt., 1, 225–228 (1993). 10.1002/pip.4670010306 CASGoogle Scholar 3M. A. Green and K. Emery, ‘Solar cell efficiency tables (version 3)’, Progr. Photovolt., 2, 27–34 (1994). 10.1002/pip.4670020105 CASGoogle Scholar 4M. A. Green and K. Emery, ‘Solar cell efficiency tables (version 4)’, Progr. Photovolt., 2, 231–234 (1994). 10.1002/pip.4670020307 CASGoogle Scholar 5M. A. Green, K. Emery, K. Bücher and D. L. King, ‘Solar cell efficiency tables (version 5)’, Progr. Photovolt., 3, 51–55 (1995). 10.1002/pip.4670030106 CASWeb of Science®Google Scholar 6M. A. Green, K. Emery, K. Bücher and D. L. King, ‘Solar cell efficiency tables (version 6)’, Progr. Photovolt., 3, 229–233 (1995). 10.1002/pip.4670030403 CASWeb of Science®Google Scholar 7M. A. Green, K. Emery, K. Bücher and D. L. King, ‘Solar cell efficiency tables (version 7)’, Progr. Photovolt., 4, 59–62 (1996). 10.1002/(SICI)1099-159X(199601/02)4:1 3.0.CO;2-4 CASWeb of Science®Google Scholar 8M. A. Green, K. Emery, K. Bücher, D. L. King and S. Igari, ‘Solar cell efficiency tables (version 8)’, Progr. Photovolt., 4, 321–325 (1996). 10.1002/(SICI)1099-159X(199607/08)4:4 3.0.CO;2-5 CASWeb of Science®Google Scholar 9M. A. Green, K. Emery, K. Bücher, D. L. King and S. Igari, ‘Solar cell efficiency tables (version 9)’, Progr. Photovolt., 5, 51–54 (1997). 10.1002/(SICI)1099-159X(199701/02)5:1 3.0.CO;2-K CASWeb of Science®Google Scholar 10M. A. Green, K. Emery, K. Bücher, D. L. King and S. Igari, ‘Solar cell efficiency tables (version 10)’, Progr. Photovolt., 5, 265–268 (1997). 10.1002/(SICI)1099-159X(199707/08)5:4 3.0.CO;2-4 CASWeb of Science®Google Scholar 11M. A. Green, K. Emery, K. Bücher, D. L. King and S. Igari, ‘Solar cell efficiency tables (version 11)’, Progr. Photovolt., 6, 35–42 (1998). 10.1002/(SICI)1099-159X(199801/02)6:1 3.0.CO;2-5 CASWeb of Science®Google Scholar 12M. A. Green, K. Emery, K. Bücher, D. L. King and S. Igari, ‘Solar cell efficiency tables (version 12)’, Progr. Photovolt., 6, 265–270 (1998). 10.1002/(SICI)1099-159X(199807/08)6:4 3.0.CO;2-7 CASWeb of Science®Google Scholar 13M. A. Green, K. Emery, K. Bücher, D. L. King and S. Igari, ‘Solar cell efficiency tables (version 13)’, Progr. Photovolt., 7, 31–38 (1999). 10.1002/(SICI)1099-159X(199901/02)7:1 3.0.CO;2-B CASWeb of Science®Google Scholar 14M. A. Green, K. Emery, K. Bücher, D. L. King and S. Igari, ‘Solar cell efficiency tables (version 14)’, Progr. Photovolt., 7, 321–326 (1999). 10.1002/(SICI)1099-159X(199907/08)7:4 3.0.CO;2-H CASWeb of Science®Google Scholar 15J. Metzdorf, T. Wittchen, K. Heidler, K. Dehne, R. Shimokawa, F. Nagamine, H. Ossenbrink, L. Fornarini, C. Goodbody, M. Davies, K. Emery and R. DeBlasio, Objectives and results of the PEP'87 round-robin calibration of reference solar cells and modules, in Conf. Record, 21st IEEE Photovoltaic Specialists Conf., Kissimimee, May, 1990, pp. 952–959. Google Scholar 16Standard for Terrestrial Solar Spectral Irradiance Tables at Air Mass 1.5 for a 37° Tilted Surface, ASTM Standard E892, Vol. 12.02, Philadelphia, PA. Google Scholar 17Standard for Terrestrial Direct Normal Solar spectral Irradiance Tables for Air Mass 1.5, ASTM Standard E891, Vol. 12.02, Philadelphia, PA. Google Scholar 18Measurement Principles for Terrestrial PV Solar Devices with Reference Spectral Irradiance Data, International Electrochemical Commission Standard 904-3, 1989. Google Scholar 19Photovoltaic Devices Part 1 Measurement of Photovoltaic Current–Voltage Characteristics, International Electrochemical Commission Standard 904-1, 1989. Google Scholar 20Standard Methods of Testing Electrical Performance of Non-Concentrator Terrestrial Photovoltaic Modules and Arrays Using Reference Cells, ASTM Standard E1036, Philadelphia, PA. Google Scholar 21Standard Methods of Testing Electrical Performance of 1 Photovoltaic Cells Using Reference Cells, ASTM Standard E948, Vol. 12.02, Philadelphia, PA. Google Scholar 22Standard Procedures for Terrestrial Photovoltaic Measurements, Commission of The European Community, CEC 101, Issue 2, EUR 7078, EN, 1981. Google Scholar 23K. A. Emery, C. R. Osterwald and C. V. Wells, Uncertainty analysis of photovoltaic efficiency measurements, Proc. 19th IEEE Photovoltaic Specialists Conf., New Orleans, LA, 4–8 May, 1987, pp. 153–159. Google Scholar 24K. Heidler and J. Beier, Uncertainty analysis of PV efficiency measurements with a solar simulator: spectral mismatch, non-uniformity and other sources of error, Proc. 8th European Solar Energy Conf., Florence, Italy, 9–12 May, 1988, pp. 554–559. Google Scholar 25K. Emery and C. Osterwald, ‘ Efficiency measurements and other performance-rating methods’, in Current Topics in Photovoltaics, Chap. 4, Eds. T. Coutts and J. Meakin, Vol. 3, pp. 301–350, Academic Press, New York, 1988. Google Scholar 26J. Zhao, A. Wang, M. Green and F. Ferrazza, ‘Novel 19.8% efficient ‘honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cell’, Appl. Phys. Lett., 73, 1991–1993 (1998). 10.1063/1.122345 CASWeb of Science®Google Scholar 27Y. Bai, D. H. Ford, J. Rand and A. Barnett, 16.6% efficient silicon-film™ polycrystalline silicon solar cell, in Conf. Record, 26th IEEE Photovoltaic Specialists Conf., Anaheim, September/October, 1997, pp. 35–38. Google Scholar 28R. P. Gale, R. W. McClelland, D. B. Dingle, J. V. Gormley, R. M. Burgess, N. P. Kim, R. A. Mickelsen and B. J. Stanbery, High-efficiency GaAs/CuInSe2 and AlGaAs/CuInSe2 thin-film tandem solar cells, in Conf. Record, 21st IEEE Photovoltaic Specialists Conf., Kissimimee, May, 1990, pp. 53–57. Google Scholar 29R. Venkatasubramanian, B. C. O'Quinn, J. S. Hills, P. R. Sharps, M. L. Timmons, J. A. Hutchby, H. Field, A. Ahrenkiel and B. Keyes, 18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate, in Conf. Record, 25th IEEE Photovoltaic Specialists Conf., Washington, May, 1997, pp. 31–36. Google Scholar 30C. J. Keavney, V. E. Haven and S. M. Vernon, Emitter structures in MOCVD InP solar cells, in Conf. Record, 21st IEEE PHotovoltaic Specialists Conf., Kissimimee, May, 1990, pp. 141–144. Google Scholar 31H. Ohyama, T. Aramoto, S. Kumazawa, H. Higuchi, T. Arita, S. Shibutani, T. Nishio, J. Nakajima, M. Tsuji, A. Hanafusa, T. Hibino, K. Omura and M. Murozono, 16.0% efficient thin-film CdS/CdTe solar cells, in Conf. Record, 26th IEEE Photovoltaic Specialists Conf., Anaheim, September/ October, 1997, pp. 343–346. Google Scholar 32D. Bonnet, H. Richter and K. Jäger, The CTS thin film solar module—closer to production, in Conf. Record, 13th European Photovoltaic Solar Energy Conf., Nice, October, 1995, pp. 1456–1461. Google Scholar 33M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon and R. Noufi, ‘Progress toward 20% efficiency in Cu(In,Ga)Se polycrystalline thin-film solar cell’, Progr. Photovolt., 7 (this issue). Google Scholar 34N. F. Cooray, K. Kushiya, A. Fujimaki, I. Sugimaya, T. Miura, D. Okumura, M. Sato, M. Ooshita and O. Yamase, Large area ZnO films optimized for graded band-gap Cu(InGa)Se2-based thin-film mini-modules, in Tech. Digest, Init. PVSEC-9, Miyasaki, November, 1996, pp. 597–598. Google Scholar 35S. Okamoto, T. Takahama, Y. Hishikawa, S. Tsuge, M. Nishikune, N. Nakamura, S. Tsuda, H. Nishiwaki, S. Nakano and Y. Kuwano, Improvement in a-Si:H and a-SiC:H for high-efficiency solar cells using hydrogen plasma treatment, in Conf. Record, 11th European Photovoltaic Solar Energy Conf., Montreux, October, 1992, pp. 537–540. Google Scholar 36Y. Hishikawa, M. Isomura, S. Okamoto, H. Hashimoto and S. Tsuda, Effects of the i-layer properties and impurity on the performance of a-Si solar cells, in Tech. Digest, Int. PVSEC-7, Nagoya, November, 1993, pp. 29–32. Google Scholar 37M. Ohmori, T. Takamoto, E. Ikeda and H. Kurita, High efficiency InGaP/GaAs tandem solar cells, in Tech. Digest, Int. PVSEC-9, Miyazaki, Japan, November, 1996, pp. 525–528. Google Scholar 38K. Mitchell, C. Eberspacher, J. Ermer and D. Pier, Single and tandem junction CuInSe2 cell and module technology, in Conf. Record, 20th IEEE Photovoltaic Specialists Conf., Las Vegas, September, 1988, pp. 1384–1389. Google Scholar 39J. Yang, A. Banerjee, S. Sugiyama and S. Guha, Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency, in Conf. Record, 26th IEEE Photovoltaic Specialists Conf., Anaheim, September/October, 1997, pp. 563–568. Google Scholar 40J. H. Zhao, A. Wang, F. Yun, G. Zhang, D. M. Roche, S. R. Wenham and M. A. Green, ‘20,000 PERL silicon cells for the ‘1996 World Solar Challenge' solar car race’, Progr. Photovolt., 5, 269–276 (1997). 10.1002/(SICI)1099-159X(199707/08)5:4 3.0.CO;2-1 CASWeb of Science®Google Scholar 41D. L. King, W. K. Schubert and T. D. Hund, World's first 15% efficiency multicrystalline silicon modules, Conf. Record, 1st World Conf. on Photovoltaic Energy Conversion, Hawaii, December, 1994, pp. 1660–1662. Google Scholar 42R. R. Gay, Status and prospects for CIS-based photovoltaics, in Tech. Digest, Int. PVSEC-9, Miyazaki, 1996, pp. 149–152. Google Scholar 43J. Yang, A. Banerjee, T. Glatfelter, K. Hoffman, X. Xu and S. Guha, Progress in triple-junction amorphous silicon-based alloy solar cells and modules using hydrogen dilution, in Conf. Record, 1st World Conf. Photovoltaic Energy Conversion, Hawaii, December, 1994, pp. 380–385. Google Scholar 44S. M. Vernon, S. P. Tobin, V. E. Haven, L. M. Geoffroy and M. M. Sanfacon, High-efficiency concentrator cells from GaAs on Si, in Conf. Record, 22nd IEEE Photovoltaic Specialists Conf., Las Vegas, October, 1991, pp. 353–357. Google Scholar 45J. S. Ward, M. W. Wanlass, T. J. Coutts, K. A. Emery and C. R. Osterwald, InP concentrator solar cells, in Conf. Record, 22nd IEEE Photovoltaic Specialists Conf., Las Vegas, October, 1991, pp. 365–370. Google Scholar 46P. J. Verlinden, R. M. Swanson, R. A. Crane, K. Wickham and J. Perkins, A 26.8% efficient concentrator point-contact solar cell, in Conf. Record, 13th European Photovoltaic Solar Energy Conf., Nice, October, 1995, pp. 1582–1585. Google Scholar 47F. Zhang, S. R. Wenham and M. A. Green, ‘Large area, concentrator buried contact solar cells’, IEEE Trans. on Elect. Devs., 42, 144–149 (1995). 10.1109/16.370024 Web of Science®Google Scholar 48M. W. Wanlass, T. J. Coutts, J. S. Ward and K. A. Emery, High-efficiency heteroepitaxial InP solar cells, in Conf. Record, 21st IEEE Photovoltaic Specialists Conf., Kissimimee, May, 1990, pp. 159–165. Google Scholar 49L. M. Frass, J. E. Avery, V. S. Sundaram, V. T. Kinh, T. M. Davenport, J. W. Yerkes, J. M. Gee and K. A. Emery, Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications, in Conf. Record, 21st IEEE Photovoltaic Specialists Conf., Kissimimee, May, 1990, pp. 190–195. Google Scholar 50M. W. Wanlass, T. J. Coutts, J. S. Ward, K. A. Emery, T. A. Gessert and C. R. Osterwald, Advanced high-efficiency concentrator tandem solar cells, in Conf. Record, 21st IEEE Photovoltaic Specialists Conf., Kissimimee, May, 1990, pp. 38–45. Google Scholar 51D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen and J. K. Snyder, ‘30.2% efficient GaInP/GaAs monolithic two-terminal tandem concentrator cells’, Progr. Photovolt., 3, 47–50 (1995). 10.1002/pip.4670030105 CASWeb of Science®Google Scholar 52J. M. Gee and G. F. Virshup, A 30%-efficient GaAs/Silicon mechanically stacked, multijunction concentrator solar cell, in Conf. Record, 20th IEEE Photovoltaic Specialists Conf., Las Vegas, September, 1988, pp. 754–758. Google Scholar 53M. F. Piszczor, D. J. Brinker, D. J. Flood, J. E. Avery, L. M. Fraas, E. S. Fairbanks, J. W. Yerkes and M. J. O'Neill, A high-performance photovoltaic concentrator array: the mini-dome Fresnel lens concentrator with 30% efficient GaAs/GaSb tandem cells, in Conf. Record, 22nd IEEE Photovoltaic Specialists Conf., Las Vegas, October, 1991, pp. 1485–1489. Google Scholar 54C. J. Chiang and E. H. Richards, A 20% efficient photovoltaic concentrator module, in Conf. Record, 21st IEEE Photovoltaic Specialists Conf., Kissimimee, May, 1990, pp. 861–863. Google Scholar 55J. Knobloch, S. W. Glunz, D. Biro, W. Warta, E. Schäffer and W. Wettling, Solar cells with efficiencies above 21% processed from Czochralski grown silicon, in Conf. Record, 25th IEEE Photovoltaic Specialists Conf., Washington, May, 1996, pp. 405–408. Google Scholar 56A. Wang, J. Zhao, S. R. Wenham and M. A. Green, ‘21.5% efficient thin silicon solar cell’, Progr. Photovolt., 4, 55–58 (1996). 10.1002/(SICI)1099-159X(199601/02)4:1 3.0.CO;2-P CASWeb of Science®Google Scholar 57C. Hebling, S. W. Glunz, J. O. Schumacher and J. Knobloch, High-efficiency (19.2%) silicon thin-film solar cells with interdigitated emitter and base-front-contact, in Conf. Record, 14th European Photovoltaic Solar Energy Conf., Barcelona, July, 1997, pp. 2318–2323. Google Scholar 58H. Lautenschlager, F. Lutz, C. Schetter, U. Schubert and R. Schindler, MC-silicon solar cells with >17% efficiency, in Conf. Record, 26th IEEE Photovoltaic Specialists Conf., Anaheim, September, 1997, pp. 7–12. Google Scholar 59H. Nakaya, M. Nishida, Y. Takeda, S. Moriuchi, T. Tonegawa, T. Machida and T. Nunoi, ‘Polycrystalline silicon solar cells with v-grooved surface’, Solar Energy Mat. Solar Cells, 34, 219–225 (1994). 10.1016/0927-0248(94)90043-4 CASWeb of Science®Google Scholar 60C. Hebling, S. Reber, K. Schmidt, R. Lüdermann and F. Lutz, Oriented recrystallization of silicon layers of silicon thin-film solar cells, in Conf. Record, 26th IEEE Photovoltaic Specialists Conf., Anaheim, September, 1997, pp. 623–626. Google Scholar 61K. Yamamoto, M. Yoshimi, T. Suzuki, Y. Tawada, T. Okamoto and A. Nakajima, Thin film poly-si solar cell on glass substrate fabricated at low temperature, presented at MRS Spring Meeting, San Francisco, April, 1998. Google Scholar 62Y. C. M. Yeh, C. Chang, F. Ho and H. Yoo, Large scale, high efficiency GaAs/Ge cell production, in Conf. Record, 21st IEEE Photovoltaic Specialists Conf., Kissimimee, May, 1990, pp. 79–83. Google Scholar 63R. R. Schmit, J. S. Reynolds, J. K. Arch and G. D. Stevens, The effect of silicon purity on spheral Solar™ cell processing and performance, in Conf. Record, 24th IEEE Photovoltaic Specialists Conf., Hawaii, December, 1994, pp. 1603–1606. Google Scholar 64H. S. Ullal, K. Zweibel and B. G. von Roedern, Current status of polycrystalline thin-film technologies, in Conf. Record, 26th IEEE Photovoltaic Specialists Conf., Anaheim, September, 1997, pp. 301–305. Google Scholar Citing Literature Volume8, Issue1Millennium Special Issue ‘PV 2000—And Beyond’January/February 2000Pages 187-195 ReferencesRelatedInformation

Referência(s)