Marangoni flows and corrosion of refractory walls
1998; Royal Society; Volume: 356; Issue: 1739 Linguagem: Inglês
10.1098/rsta.1998.0206
ISSN1471-2962
Autores Tópico(s)Power Transformer Diagnostics and Insulation
ResumoRestricted accessMoreSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmail Cite this article 1998Marangoni flows and corrosion of refractory wallsPhil. Trans. R. Soc. A.3561015–1026http://doi.org/10.1098/rsta.1998.0206SectionRestricted accessMarangoni flows and corrosion of refractory walls Published:15 April 1998https://doi.org/10.1098/rsta.1998.0206AbstractLocal corrosion of refractory at slag–gas and slag–metal interfaces is caused by active motion of slag film formed by the wettability between the refractory and slag. In the systems of SiO2(s)–(PbO–SiO2) slag and SiO2(s)–Pb(l)–(PbO–SiO2) slag, where dissolved components from refractory into the slag increases the interfacial tension of the slag or slag–metal, continuous washing of the refractory wall with thin fresh slag film supplied from the bulk slag phase by the Marangoni effect causes the local corrosion of refractory above the slag level or below the metal level. When the dissolved component from refractory into the slag reduces interfacial tension, for example, in the system of SiO2(s)–(FetO–SiO2) slag, the local corrosion is induced by the active slag–film motion with alternative formation and disappearance in cyclic mode due to the Marangoni effect, and change in the form of slag film due to the variation of interfacial tension and density of the slag film. Local corrosion of oxide refractories for practical use, containing trough materials, at slag–gas and slag–metal interfaces is classified into the above two types. The Maragoni flow of the slag film is also considered to play an important role in the local corrosion of oxide–graphite refractories such as Al2O3–C and MgO–C at the slag–metal interface during the stage of the oxide phase corrosion in the refractory. Previous ArticleNext Article VIEW FULL TEXT DOWNLOAD PDF FiguresRelatedReferencesDetailsCited by Matsushita T, Belov I, Siafakas D, Jarfors A and Watanabe M (2021) Interfacial phenomena between molten iron and molten slag–Effect of nitrogen on the Marangoni convection, Journal of Materials Science, 10.1007/s10853-020-05730-z, 56:13, (7811-7822), Online publication date: 1-May-2021. Hasegawa I, Koizumi T, Kita K, Suzuki M and Tanaka T (2021) Mechanism for Local Corrosion of Solid B2O3 at Water–Gallium Interface Induced by Branched Flow, MATERIALS TRANSACTIONS, 10.2320/matertrans.MT-M2020275, 62:3, (427-435), Online publication date: 1-Mar-2021. Mills K (2021) Metallurgical Slags Encyclopedia of Glass Science, Technology, History, and Culture, 10.1002/9781118801017.ch7.4, (843-855), Online publication date: 1-Feb-2021. Zou Y, Huang A and Gu H (2020) Novel phenomenon of quasi‐volcanic corrosion on the alumina refractory‐slag‐air interface, Journal of the American Ceramic Society, 10.1111/jace.17394, 103:11, (6639-6649), Online publication date: 1-Nov-2020. Lian P, Huang A, Gu H, Zou Y, Fu L and Wang Y (2018) Towards prediction of local corrosion on alumina refractories driven by Marangoni convection, Ceramics International, 10.1016/j.ceramint.2017.10.095, 44:2, (1675-1680), Online publication date: 1-Feb-2018. Abdeyazdan H, Monaghan B, Longbottom R, Rhamdhani M, Dogan N and Chapman M (2017) Interfacial Tension in the CaO-Al2O3-SiO2-(MgO) Liquid Slag–Solid Oxide Systems, Metallurgical and Materials Transactions B, 10.1007/s11663-017-0978-9, 48:4, (1970-1980), Online publication date: 1-Aug-2017. Chen L, Malfliet A, Jones P, Blanpain B and Guo M (2016) Comparison of the chemical corrosion resistance of magnesia-based refractories by stainless steelmaking slags under vacuum conditions, Ceramics International, 10.1016/j.ceramint.2015.08.175, 42:1, (743-751), Online publication date: 1-Jan-2016. Vollmann S and Harmuth H (2014) Marangoni Convection as a Contribution to Refractory Corrosion - CFD Simulation and Analytical Approaches Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013), 10.1002/9781118837009.ch146, (857-862) Scheller P, Lee J, Yoshikwa T and Tanaka T (2014) Applications of Interfacial Phenomena in Process Metallurgy Treatise on Process Metallurgy, 10.1016/B978-0-08-096984-8.00022-7, (119-139), . Scheller P and Yoshikawa T (2014) Interfacial Convection and Its Effect on Material Processing Treatise on Process Metallurgy, 10.1016/B978-0-08-096984-8.00020-3, (95-109), . Teng L (2014) Refractory Corrosion During Steelmaking Operations Treatise on Process Metallurgy, 10.1016/B978-0-08-096984-8.00006-9, (283-303), . Pötschke J and Brüggmann C (2012) Premature Wear of Refractories due to Marangoni-Convection, steel research international, 10.1002/srin.201100294, 83:7, (637-644), Online publication date: 1-Jul-2012. Matsushita T, Watanabe T, Hayashi M and Mukai K (2013) Thermal, optical and surface/interfacial properties of molten slag systems, International Materials Reviews, 10.1179/1743280411Y.0000000007, 56:5-6, (287-323), Online publication date: 1-Nov-2011. Kim T and Lee J (2011) Recovery of Fe and P from CaO-SiO2-FetO-P2O5 Slag by Microwave Treatment, MATERIALS TRANSACTIONS, 10.2320/matertrans.M2011178, 52:12, (2233-2238), . Blackburn M, Massard L and Gaubil M (2010) Refractory Solutions for Extra White Glasses 70th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, Volume 31, Issue 1, 10.1002/9780470769843.ch19, (179-187) Lee J, Tazuke A, Tanaka T and Park J (2009) Estimation of sulfur segregation at the interface between molten iron and graphite substrate from wetting experiments, Metals and Materials International, 10.1007/s12540-009-0501-1, 15:3, (501-505), Online publication date: 1-Jun-2009. Sauerbrey R, Mori G, Majcenovic C and Harmuth H (2009) Corrosion protection of MgO electrodes at 1400°C, Corrosion Science, 10.1016/j.corsci.2008.11.009, 51:1, (1-5), Online publication date: 1-Jan-2009. Bui A, Park S, Chung I and Lee H (2006) Dissolution behavior of zirconia-refractories during continuous casting of steel, Metals and Materials International, 10.1007/BF03027711, 12:5, (435-440), Online publication date: 1-Oct-2006. Bui A, Ha H, Chung I and Lee H (2005) Effect of alumina content and solid phase in molten flux on dissolution of alumina, Metals and Materials International, 10.1007/BF03027336, 11:4, (319-326), Online publication date: 1-Aug-2005. Monaghan B, Chen L and Sorbe J (2013) Comparative study of oxide inclusion dissolution in CaO–SiO 2 –Al 2 O 3 slag , Ironmaking & Steelmaking, 10.1179/174328105X28793, 32:3, (258-264), Online publication date: 1-Jun-2005. BUI A, HA H, CHUNG I and LEE H (2005) Dissolution Kinetics of Alumina into Mold Fluxes for Continuous Steel Casting, ISIJ International, 10.2355/isijinternational.45.1856, 45:12, (1856-1863), . Sridhar S and Sohn H (2005) The kinetics of metallurgical reactions Fundamentals of Metallurgy, 10.1533/9781845690946.1.270, (270-349), . Mukai K (2005) Interfacial phenomena, metals processing and properties Fundamentals of Metallurgy, 10.1533/9781845690946.1.237, (237-269), . Sun S, Zhang L and Jahanshahi S (2003) From viscosity and surface tension to marangoni flow in melts, Metallurgical and Materials Transactions B, 10.1007/s11663-003-0019-8, 34:5, (517-523), Online publication date: 1-Oct-2003. Mukai K and Zeze M (2016) Motion of Fine Particles under Interfacial Tension Gradient in Relation to Continuous Casting Process, steel research international, 10.1002/srin.200300172, 74:3, (131-138), Online publication date: 1-Mar-2003. Mukai, K, Li, Z and Tao, Z Bubble Generation in MgO-C Crucible Charged with Slag and Metal in Relation to Local Corrosion, High Temperature Materials and Processes, 10.1515/HTMP.2001.20.3-4.255, 20:3-4, (255-262) Emi, T Toward Future Development: Pros and Cons of Ironmaking and Steelmaking Slags and Mold Fluxes, High Temperature Materials and Processes, 10.1515/HTMP.2001.20.3-4.167, 20:3-4, (167-184) Mukai K, Sako T, Yuan Z and Su Z (2000) Local Corrosion of Solid Silica at the Surface of Molten Silicon, Materials Transactions, JIM, 10.2320/matertrans1989.41.639, 41:5, (639-645), . This Issue15 April 1998Volume 356Issue 1739Discussion Meeting Issue ‘Marangoni and interfacial phenomena in materials processing’ organized by E. D. Hondros, M. McLean and K. C. Mills Article InformationDOI:https://doi.org/10.1098/rsta.1998.0206Published by:Royal SocietyPrint ISSN:1364-503XOnline ISSN:1471-2962History: Published online15/04/1998Published in print15/04/1998 License: Citations and impact Keywordslocal corrosionslag surfaceiron and steel makingslag–metal interfaceMarangoni flowrefractory
Referência(s)