Structure and Technofunctional Properties of Protein-Polysaccharide Complexes: A Review
1998; Taylor & Francis; Volume: 38; Issue: 8 Linguagem: Inglês
10.1080/10408699891274354
ISSN1549-7852
AutoresChristophe Schmitt, Christian Sanchez, Sylvie Banon, J. Hardy,
Tópico(s)Microencapsulation and Drying Processes
ResumoFood proteins and polysaccharides are the two key structural entities in food materials. Generally, interactions between proteins and polysaccharides in aqueous media can lead to one- or two-phase systems, the latter being generally observed. In some cases of protein-polysaccharide net attraction, mainly mediated through electrostatic interactions, complex coacervation or associative phase separation occurs, giving rise to the formation of protein-polysaccharide complexes. Physicochemical factors such as pH, ionic strength, ratio of protein to polysaccharide, polysaccharide and protein charge, and molecular weight affect the formation and stability of such complexes. Additionally, the temperature and mechanical factors (pressure, shearing rate, and time) have an influence on phase separation and time stability of the system. The protein-polysaccharide complexes exhibit better functional properties than that of the proteins and polysaccharides alone. This improvement could be attributed to the simultaneous presence of the two biopolymers, as well as the structure of the complexes. Consequently, the interesting hydration (solubility, viscosity), structuration (aggregation, gelation) and surface (foaming, emulsifying) properties of these complexes can be used in a number of domains. Among others, these could be macromolecular purification, microencapsulation, food formulation (fat replacers, texturing agents), and synthesis of biomaterials (edible films, artificial grafts).
Referência(s)