Revisão Acesso aberto

Building the vertebrate neuromuscular synapse

2002; Wiley; Volume: 53; Issue: 4 Linguagem: Inglês

10.1002/neu.10137

ISSN

1097-4695

Autores

Steven J. Burden,

Tópico(s)

Zebrafish Biomedical Research Applications

Resumo

Journal of NeurobiologyVolume 53, Issue 4 p. 501-511 Review ArticleFree Access Building the vertebrate neuromuscular synapse Steven J. Burden, Corresponding Author Steven J. Burden [email protected] Molecular Neurobiology Program, Skirball Institute, NYU Medical School, 540 First Avenue, New York City, New York 10016Molecular Neurobiology Program, Skirball Institute, NYU Medical School, 540 First Avenue, New York City, New York 10016Search for more papers by this author Steven J. Burden, Corresponding Author Steven J. Burden [email protected] Molecular Neurobiology Program, Skirball Institute, NYU Medical School, 540 First Avenue, New York City, New York 10016Molecular Neurobiology Program, Skirball Institute, NYU Medical School, 540 First Avenue, New York City, New York 10016Search for more papers by this author First published: 15 November 2002 https://doi.org/10.1002/neu.10137Citations: 103AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES Alroy I, Soussan L, Seger R, Yarden Y. 1999. Neu differentiation factor stimulates phosphorylation and activation of the Sp1 transcription factor. Mol Cell Biol 19: 1961–1972. 10.1128/MCB.19.3.1961 CASPubMedWeb of Science®Google Scholar Altiok N, Bessereau JL, Changeux JP. 1995. ErbB3 and ErbB2/neu mediate the effect of heregulin on acetylcholine receptor gene expression in muscle: differential expression at the endplate. EMBO J 14: 4258–4266. 10.1002/j.1460-2075.1995.tb00100.x CASPubMedWeb of Science®Google Scholar Anderson MJ, Cohen MW. 1977. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J Physiol (Lond) 268: 757–773. 10.1113/jphysiol.1977.sp011880 CASPubMedWeb of Science®Google Scholar Apel ED, Glass DJ, Moscoso LM, Yancopoulos GD, Sanes JR. 1997. Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron 18: 623–635. 10.1016/S0896-6273(00)80303-7 CASPubMedWeb of Science®Google Scholar Bartoli M, Ramarao MK, Cohen JB. 2001. Interactions of the rapsyn RING-H2 domain with dystroglycan. J Biol Chem 276: 24911–24917. 10.1074/jbc.M103258200 CASPubMedWeb of Science®Google Scholar Borges LS, Ferns M. 2001. Agrin-induced phosphorylation of the acetylcholine receptor regulates cytoskeletal anchoring and clustering. J Cell Biol 153: 1–12. 10.1083/jcb.153.1.1 CASPubMedWeb of Science®Google Scholar Braithwaite AW, Harris AJ. 1979. Neural influence on acetylcholine receptor clusters in embryonic development of skeletal muscles. Nature 279: 549–551. 10.1038/279549a0 CASPubMedWeb of Science®Google Scholar Briguet A, Ruegg MA. 2000. The Ets transcription factor GABP is required for postsynaptic differentiation in vivo. J Neurosci 20: 5989–5996. 10.1523/JNEUROSCI.20-16-05989.2000 CASPubMedWeb of Science®Google Scholar Burden SJ. 1998. The formation of neuromuscular synapses. Genes Dev 12: 133–148. 10.1101/gad.12.2.133 CASPubMedWeb of Science®Google Scholar Carraway KL III, Burden SJ. 1995. Neuregulins and their receptors. Curr Opin Neurobiol 5: 606–612. 10.1016/0959-4388(95)80065-4 CASPubMedWeb of Science®Google Scholar Chu GC, Moscoso LM, Sliwkowski MX, Merlie JP. 1995. Regulation of the acetylcholine receptor epsilon subunit gene by recombinant ARIA: an in vitro model for transynaptic gene regulation. Neuron 14: 329–339. 10.1016/0896-6273(95)90289-9 CASPubMedWeb of Science®Google Scholar Colledge M, Froehner SC. 1997. Tyrosine phosphorylation of nicotinic acetylcholine receptor mediates Grb2 binding. J Neurosci 17: 5038–5045. CASPubMedWeb of Science®Google Scholar Dahm LM, Landmesser LT. 1991. The regulation of synaptogenesis during normal development and following activity blockade. J Neurosci 11: 238–255. 10.1523/JNEUROSCI.11-01-00238.1991 CASPubMedWeb of Science®Google Scholar DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL, Rojas E, Park JS, Smith C, DiStefano PS, Glass DJ, Burden SJ, Yancopoulos GD. 1996. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85: 501–512. 10.1016/S0092-8674(00)81251-9 CASPubMedWeb of Science®Google Scholar Falls DL, Rosen KM, Corfas G, Lane WS, Fischbach GD. 1993. ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family. Cell 72: 801–815. 10.1016/0092-8674(93)90407-H CASPubMedWeb of Science®Google Scholar Ferns M, Deiner M, Hall Z. 1996. Agrin-induced acetylcholine receptor clustering in mammalian muscle requires tyrosine phosphorylation. J Cell Biol 132: 937–944. 10.1083/jcb.132.5.937 CASPubMedWeb of Science®Google Scholar Fischbach GD, Rosen KM. 1997. ARIA: a neuromuscular junction neuregulin. Annu Rev Neurosci 20: 429–458. 10.1146/annurev.neuro.20.1.429 CASPubMedWeb of Science®Google Scholar Frank E, Fischbach GD. 1979. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. J Cell Biol 83: 143–158. 10.1083/jcb.83.1.143 CASPubMedWeb of Science®Google Scholar Frank E, Jansen JKS, Lømo T, Westgaard R. 1974. Maintained function of foreign synapses on hyperinnervated skeletal muscle fibres of the rat. Nature 247: 375–376. 10.1038/247375a0 CASPubMedWeb of Science®Google Scholar Fu AK, Smith FD, Zhou H, Chu AH, Tsim KW, Peng BH, Ip NY. 1999. Xenopus muscle-specific kinase: molecular cloning and prominent expression in neural tissues during early embryonic development. Eur J Neurosci 11: 373–382. 10.1046/j.1460-9568.1999.00443.x CASPubMedWeb of Science®Google Scholar Fuhrer C, Hall ZW. 1996. Functional interaction of Src family kinases with the acetylcholine receptor in C2 myotubes. J Biol Chem 271: 32474–32481. 10.1074/jbc.271.50.32474 CASPubMedWeb of Science®Google Scholar Fuhrer C, Gautam M, Sugiyama JE, Hall ZW. 1999. Roles of rapsyn and agrin in interaction of postsynaptic proteins with acetylcholine receptors. J Neurosci 19: 6405–6416. 10.1523/JNEUROSCI.19-15-06405.1999 CASPubMedWeb of Science®Google Scholar Fuhrer C, Sugiyama JE, Taylor RG, Hall ZW. 1997. Association of muscle-specific kinase MuSK with the acetylcholine receptor in mammalian muscle. EMBO J 16: 4951–4960. 10.1093/emboj/16.16.4951 CASPubMedWeb of Science®Google Scholar Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, Lemke G. 1995. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor [see comments]. Nature 378: 390–394. 10.1038/378390a0 CASPubMedWeb of Science®Google Scholar Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR. 1996. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85: 525–535. 10.1016/S0092-8674(00)81253-2 CASPubMedWeb of Science®Google Scholar Gautam M, Noakes PG, Mudd J, Nichol M, Chu GC, Sanes JR, Merlie JP. 1995. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice [see comments]. Nature 377: 232–236. 10.1038/377232a0 CASPubMedWeb of Science®Google Scholar Glass DJ, Yancopoulos GD. 1997. Sequential roles of agrin, MuSK and rapsyn during neuromuscular junction formation. Curr Opin Neurobiol 7: 379–384. 10.1016/S0959-4388(97)80066-9 CASPubMedWeb of Science®Google Scholar Glass DJ, Apel ED, Shah S, Bowen DC, DeChiara TM, Stitt TN, Sanes JR, Yancopoulos GD. 1997. Kinase domain of the muscle-specific receptor tyrosine kinase (MuSK) is sufficient for phosphorylation but not clustering of acetylcholine receptors: required role for the MuSK ectodomain? Proc Natl Acad Sci USA 94: 8848–8853. 10.1073/pnas.94.16.8848 CASPubMedWeb of Science®Google Scholar Glass DJ, Bowen DC, Stitt TN, Radziejewski C, Bruno J, Ryan TE, Gies DR, Shah S, Mattsson K, Burden SJ, DiStefano PS, Valenzuela DM, DeChiara TM, Yancopoulos GD. 1996. Agrin acts via a MuSK receptor complex. Cell 85: 513–523. 10.1016/S0092-8674(00)81252-0 CASPubMedWeb of Science®Google Scholar Goldman D, Brenner HR, Heinemann S. 1988. Acetylcholine receptor α-, β-, γ-, and δ-subunit mRNA levels are regulated by muscle activity. Neuron 1: 329–333. 10.1016/0896-6273(88)90081-5 CASPubMedWeb of Science®Google Scholar Grady RM, Zhou H, Cunningham JM, Henry MD, Campbell KP, Sanes JR. 2000. Maturation and maintenance of the neuromuscular synapse: genetic evidence for roles of the dystrophin–glycoprotein complex. Neuron 25: 279–293. 10.1016/S0896-6273(00)80894-6 CASPubMedWeb of Science®Google Scholar Gramolini AO, Angus LM, Schaeffer L, Burton EA, Tinsley JM, Davies KE, Changeux JP, Jasmin BJ. 1999. Induction of utrophin gene expression by heregulin in skeletal muscle cells: role of the N-box motif and GA binding protein. Proc Natl Acad Sci USA 96: 3223–3227. 10.1073/pnas.96.6.3223 CASPubMedWeb of Science®Google Scholar Harris AJ. 1981. Embryonic growth and innervation of rat skeletal muscles. III. Neural regulation of junctional and extra-junctional acetylcholine receptor clusters. Philos Trans R Soc Lond B Biol Sci 293: 287–314. 10.1098/rstb.1981.0078 CASPubMedGoogle Scholar Herbst R, Burden SJ. 2000. The juxtamembrane region of MuSK has a critical role in agrin-mediated signaling [published erratum appears in EMBO J 2000 Mar 1;19(5):1167]. EMBO J 19: 67–77. 10.1093/emboj/19.1.67 CASPubMedWeb of Science®Google Scholar Herbst R, Avetisova E, Burden SJ. 2002. Restoration of synapse formation in Musk mutant mice expressing a Musk/Trk chimeric receptor. Development, in press. 10.1242/dev.00112 PubMedWeb of Science®Google Scholar Ip FC, Glass DG, Gies DR, Cheung J, Lai KO, Fu AK, Yancopoulos GD, Ip NY. 2000. Cloning and characterization of muscle-specific kinase in chicken. Mol Cell Neurosci 16: 661–673. 10.1006/mcne.2000.0892 CASPubMedWeb of Science®Google Scholar Jennings CG, Dyer SM, Burden SJ. 1993. Muscle-specific trk-related receptor with a kringle domain defines a distinct class of receptor tyrosine kinases. Proc Natl Acad Sci USA 90: 2895–2899. 10.1073/pnas.90.7.2895 CASPubMedWeb of Science®Google Scholar Jo SA, Zhu X, Marchionni MA, Burden SJ. 1995. Neuregulins are concentrated at nerve-muscle synapses and activate ACh- receptor gene expression. Nature 373: 158–161. 10.1038/373158a0 CASPubMedWeb of Science®Google Scholar Jones G, Moore C, Hashemolhosseini S, Brenner HR. 1999. Constitutively active MuSK is clustered in the absence of agrin and induces ectopic postsynaptic-like membranes in skeletal muscle fibers. J Neurosci 19: 3376–3383. 10.1523/JNEUROSCI.19-09-03376.1999 CASPubMedWeb of Science®Google Scholar Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C. 1995. Requirement for neuregulin receptor erbB2 in neural and cardiac development [see comments]. Nature 378: 394–398. 10.1038/378394a0 CASPubMedWeb of Science®Google Scholar Lin W, Burgess RW, Dominguez B, Pfaff SL, Sanes JR, Lee KF. 2001. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410: 1057–1064. 10.1038/35074025 CASPubMedWeb of Science®Google Scholar McMahan UJ. 1990. The agrin hypothesis. Cold Spring Harb Symp Quant Biol 55: 407–418. 10.1101/SQB.1990.055.01.041 CASPubMedGoogle Scholar Meier T, Hauser DM, Chiquet M, Landmann L, Ruegg MA, Brenner HR. 1997. Neural agrin induces ectopic postsynaptic specializations in innervated muscle fibers. J Neurosci 17: 6534–6544. 10.1523/JNEUROSCI.17-17-06534.1997 CASPubMedWeb of Science®Google Scholar Meier T, Masciulli F, Moore C, Schoumacher F, Eppenberger U, Denzer AJ, Jones G, Brenner HR. 1998. Agrin can mediate acetylcholine receptor gene expression in muscle by aggregation of muscle-derived neuregulins. J Cell Biol 141: 715–726. 10.1083/jcb.141.3.715 CASPubMedWeb of Science®Google Scholar Meyer D, Birchmeier C. 1995. Multiple essential functions of neuregulin in development [see comments] [published erratum appears in Nature 1995 Dec 14;378(6558):753]. Nature 378: 386–390. 10.1038/378386a0 CASPubMedWeb of Science®Google Scholar Meyer G, Wallace BG. 1998. Recruitment of a nicotinic acetylcholine receptor mutant lacking cytoplasmic tyrosine residues in its beta subunit into agrin-induced aggregates. Mol Cell Neurosci 11: 324–333. 10.1006/mcne.1998.0689 CASPubMedWeb of Science®Google Scholar Mittaud P, Marangi PA, Erb-Vogtli S, Fuhrer C. 2001. Agrin-induced activation of acetylcholine receptor-bound Src family kinases requires Rapsyn and correlates with acetylcholine receptor clustering. J Biol Chem 276: 14505–14513. 10.1074/jbc.M007024200 CASPubMedWeb of Science®Google Scholar Mohamed AS, Rivas-Plata KA, Kraas JR, Saleh SM, Swope SL. 2001. Src-class kinases act within the agrin/MuSK pathway to regulate acetylcholine receptor phosphorylation, cytoskeletal anchoring, and clustering. J Neurosci 21: 3806–3818. CASPubMedWeb of Science®Google Scholar Moore C, Leu M, Muller U, Brenner HR. 2001. Induction of multiple signaling loops by MuSK during neuromuscular synapse formation. Proc Natl Acad Sci USA 98: 14655–14660. 10.1073/pnas.251291598 CASPubMedWeb of Science®Google Scholar Moscoso LM, Chu GC, Gautam M, Noakes PG, Merlie JP, Sanes JR. 1995. Synapse-associated expression of an acetylcholine receptor-inducing protein, ARIA/heregulin, and its putative receptors, ErbB2 and ErbB3, in developing mammalian muscle. Dev Biol 172: 158–169. 10.1006/dbio.1995.0012 CASPubMedWeb of Science®Google Scholar Nawrotzki R, Loh NY, Ruegg MA, Davies KE, Blake DJ. 1998. Characterisation of alpha-dystrobrevin in muscle. J Cell Sci 111: 2595–2605. CASPubMedWeb of Science®Google Scholar Nichols P, Croxen R, Vincent A, Rutter R, Hutchinson M, Newsom-Davis J, Beeson D. 1999. Mutation of the acetylcholine receptor epsilon-subunit promoter in congenital myasthenic syndrome. Ann Neurol 45: 439–443. 10.1002/1531-8249(199904)45:4 3.0.CO;2-W CASPubMedWeb of Science®Google Scholar Ohno K, Anlar B, Engel AG. 1999. Congenital myasthenic syndrome caused by a mutation in the Ets-binding site of the promoter region of the acetylcholine receptor epsilon subunit gene [see comments]. Neuromuscul Disord 9: 131–135. 10.1016/S0960-8966(99)00007-3 CASPubMedWeb of Science®Google Scholar Qu Z, Huganir RL. 1994. Comparison of innervation and agrin-induced tyrosine phosphorylation of the nicotinic acetylcholine receptor. J Neurosci 14: 6834–6841. CASPubMedWeb of Science®Google Scholar Ramarao MK, Cohen JB. 1998. Mechanism of nicotinic acetylcholine receptor cluster formation by rapsyn. Proc Natl Acad Sci USA 95: 4007–4012. 10.1073/pnas.95.7.4007 CASPubMedWeb of Science®Google Scholar Ramarao MK, Bianchetta MJ, Lanken J, Cohen JB. 2001. Role of rapsyn tetratricopeptide repeat and coiled-coil domains in self-association and nicotinic acetylcholine receptor clustering. J Biol Chem 276: 7475–7483. 10.1074/jbc.M009888200 CASPubMedWeb of Science®Google Scholar Rimer M, Cohen I, Lomo T, Burden SJ, McMahan UJ. 1998. Neuregulins and erbB receptors at neuromuscular junctions and at agrin- induced postsynaptic-like apparatus in skeletal muscle. Mol Cell Neurosci 12: 1–15. 10.1006/mcne.1998.0695 CASPubMedWeb of Science®Google Scholar Rosen KM, Sandrock AW Jr, Goodearl AD, Loeb JA, Fischbach GD. 1996. The role of neuregulin (ARIA) at the neuromuscular junction. Cold Spring Harb Symp Quant Biol 61: 427–434. 10.1101/SQB.1996.061.01.045 CASPubMedWeb of Science®Google Scholar Ruegg MA, Bixby JL. 1998. Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci 21: 22–27. 10.1016/S0166-2236(97)01154-5 CASPubMedWeb of Science®Google Scholar Sander A, Hesser BA, Witzemann V. 2001. MuSK induces in vivo acetylcholine receptor clusters in a ligand-independent manner. J Cell Biol 155: 1287–1296. 10.1083/jcb.200105034 CASPubMedWeb of Science®Google Scholar Sandrock AW, Jr., Dryer SE, Rosen KM, Gozani SN, Kramer R, Theill LE, Fischbach GD. 1997. Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science 276: 599–603. 10.1126/science.276.5312.599 PubMedWeb of Science®Google Scholar Sandrock AW, Jr., Goodearl AD, Yin QW, Chang D, Fischbach GD. 1995. ARIA is concentrated in nerve terminals at neuromuscular junctions and at other synapses. J Neurosci 15: 6124–6136. 10.1523/JNEUROSCI.15-09-06124.1995 CASPubMedWeb of Science®Google Scholar Sanes JR, Lichtman JW. 2001. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2: 791–805. 10.1038/35097557 CASPubMedWeb of Science®Google Scholar Schaeffer L, de Kerchove d'Exaerde A, Changeux JP. 2001. Targeting transcription to the neuromuscular synapse. Neuron 31: 15–22. 10.1016/S0896-6273(01)00353-1 CASPubMedWeb of Science®Google Scholar Si J, Tanowitz M, Won S, Mei L. 1998. Regulation by ARIA/neuregulin of acetylcholine receptor gene transcription at the neuromuscular junction. Life Sci 62: 1497–1502. 10.1016/S0024-3205(98)00096-4 CASPubMedWeb of Science®Google Scholar Smith CL, Mittaud P, Prescott ED, Fuhrer C, Burden SJ. 2001. Src, Fyn, and Yes are not required for neuromuscular synapse formation but are necessary for stabilization of agrin-induced clusters of acetylcholine receptors. J Neurosci 21: 3151–3160. 10.1523/JNEUROSCI.21-09-03151.2001 CASPubMedWeb of Science®Google Scholar Sohal GS. 1988. Development of postsynaptic-like specializations of the neuromuscular synapse in the absence of motor nerve. Int J Dev Neurosci 6: 553–565. 10.1016/0736-5748(88)90063-9 CASPubMedWeb of Science®Google Scholar Son YJ, Thompson WJ. 1995. Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells. Neuron 14: 133–141. 10.1016/0896-6273(95)90247-3 CASPubMedWeb of Science®Google Scholar Strochlic L, Cartaud A, Labas V, Hoch W, Rossier J, Cartaud J. 2001. MAGI-1c: a synaptic MAGUK interacting with muSK at the vertebrate neuromuscular junction. J Cell Biol 153: 1127–1132. 10.1083/jcb.153.5.1127 CASPubMedWeb of Science®Google Scholar Swope SL, Huganir RL. 1993. Molecular cloning of two abundant protein tyrosine kinases in Torpedo electric organ that associate with the acetylcholine receptor. J Biol Chem 268: 25152–25161. CASPubMedWeb of Science®Google Scholar Valenzuela DM, Stitt TN, DiStefano PS, Rojas E, Mattsson K, Compton DL, Nunez L, Park JS, Stark JL, Gies DR, et al. 1995. Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15: 573–584. 10.1016/0896-6273(95)90146-9 CASPubMedWeb of Science®Google Scholar Wagner KR, Cohen JB, Huganir RL. 1993. The 87K postsynaptic membrane protein from Torpedo is a protein-tyrosine kinase substrate homologous to dystrophin. Neuron 10: 511–522. 10.1016/0896-6273(93)90338-R CASPubMedWeb of Science®Google Scholar Wallace BG. 1988. Regulation of agrin-induced acetylcholine receptor aggregation by Ca++ and phorbol ester. J Cell Biol 107: 267–278. 10.1083/jcb.107.1.267 CASPubMedWeb of Science®Google Scholar Wallace BG. 1989. Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix-associated components of the postsynaptic apparatus. J Neurosci 9: 1294–1302. 10.1523/JNEUROSCI.09-04-01294.1989 CASPubMedWeb of Science®Google Scholar Wallace BG. 1992. Mechanism of agrin-induced acetylcholine receptor aggregation. J Neurobiol 23: 592–604. 10.1002/neu.480230512 CASPubMedWeb of Science®Google Scholar Wallace BG. 1994. Staurosporine inhibits agrin-induced acetylcholine receptor phosphorylation and aggregation. J Cell Biol 125: 661–668. 10.1083/jcb.125.3.661 CASPubMedWeb of Science®Google Scholar Wallace BG, Qu Z, Huganir RL. 1991. Agrin induces phosphorylation of the nicotinic acetylcholine receptor. Neuron 6: 869–878. 10.1016/0896-6273(91)90227-Q CASPubMedWeb of Science®Google Scholar Weston C, Yee B, Hod E, Prives J. 2000. Agrin-induced acetylcholine receptor clustering is mediated by the small guanosine triphosphatases Rac and Cdc42. J Cell Biol 150: 205–212. 10.1083/jcb.150.1.205 CASPubMedWeb of Science®Google Scholar Yang X, Arber S, William C, Li L, Tanabe Y, Jessell TM, Birchmeier C, Burden SJ. 2001. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30: 399–-410. 10.1016/S0896-6273(01)00287-2 CASPubMedWeb of Science®Google Scholar Yang X, Li W, Prescott ED, Burden SJ, Wang JC. 2000. DNA topoisomerase IIbeta and neural development. Science 287: 131–134. 10.1126/science.287.5450.131 CASPubMedWeb of Science®Google Scholar Zhou H, Glass DJ, Yancopoulos GD, Sanes JR. 1999. Distinct domains of MuSK mediate its abilities to induce and to associate with postsynaptic specializations. J Cell Biol 146: 1133–1146. 10.1083/jcb.146.5.1133 CASPubMedWeb of Science®Google Scholar Zhu X, Lai C, Thomas S, Burden SJ. 1995. Neuregulin receptors, erbB3 and erbB4, are localized at neuromuscular synapses. EMBO J 14: 5842–5848. 10.1002/j.1460-2075.1995.tb00272.x CASPubMedWeb of Science®Google Scholar Citing Literature Volume53, Issue4Special Issue: Nicotinic SignalingDecember 2002Pages 501-511 ReferencesRelatedInformation

Referência(s)