Revisão Acesso aberto Revisado por pares

Vulnerabilities of Mutant SWI/SNF Complexes in Cancer

2014; Cell Press; Volume: 26; Issue: 3 Linguagem: Inglês

10.1016/j.ccr.2014.07.018

ISSN

1878-3686

Autores

Katherine Helming, Xiaofeng Wang, Charles W.M. Roberts,

Tópico(s)

Phagocytosis and Immune Regulation

Resumo

Cancer genome sequencing efforts have revealed the novel theme that chromatin modifiers are frequently mutated across a wide spectrum of cancers. Mutations in genes encoding subunits of SWI/SNF (BAF) chromatin remodeling complexes are particularly prevalent, occurring in 20% of all human cancers. As these are typically loss-of-function mutations and not directly therapeutically targetable, central goals have been to elucidate mechanism and identify vulnerabilities created by these mutations. Here, we discuss emerging data that these mutations lead to the formation of aberrant residual SWI/SNF complexes that constitute a specific vulnerability and discuss the potential for exploiting these dependencies in SWI/SNF mutant cancers. Cancer genome sequencing efforts have revealed the novel theme that chromatin modifiers are frequently mutated across a wide spectrum of cancers. Mutations in genes encoding subunits of SWI/SNF (BAF) chromatin remodeling complexes are particularly prevalent, occurring in 20% of all human cancers. As these are typically loss-of-function mutations and not directly therapeutically targetable, central goals have been to elucidate mechanism and identify vulnerabilities created by these mutations. Here, we discuss emerging data that these mutations lead to the formation of aberrant residual SWI/SNF complexes that constitute a specific vulnerability and discuss the potential for exploiting these dependencies in SWI/SNF mutant cancers. SWI/SNF complexes are evolutionarily conserved multisubunit complexes that utilize the energy of ATP hydrolysis to mobilize nucleosomes and remodel chromatin (Kassabov et al., 2003Kassabov S.R. Zhang B. Persinger J. Bartholomew B. SWI/SNF unwraps, slides, and rewraps the nucleosome.Mol. Cell. 2003; 11: 391-403Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, Phelan et al., 1999Phelan M.L. Sif S. Narlikar G.J. Kingston R.E. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits.Mol. Cell. 1999; 3: 247-253Abstract Full Text Full Text PDF PubMed Scopus (386) Google Scholar). These ∼2 MDa complexes are made up of 12–15 subunits; they contain one of the two catalytic ATPase subunits, SMARCA4/BRG1 or SMARCA2/BRM; several core subunits, including SMARCB1/SNF5/INI1/BAF47 and SMARCC1/BAF155, that are present in all SWI/SNF complexes; and subunits present in only some variants, such as ARID1A and ARID1B, mutually exclusive subunits for BAF (BRG1-associated factor) varieties of the complexes, and PBRM1 and ARID2, specific for PBAF (polybromo BRG1-associated factor) varieties of the complexes (Wang et al., 1996Wang W. Côté J. Xue Y. Zhou S. Khavari P.A. Biggar S.R. Muchardt C. Kalpana G.V. Goff S.P. Yaniv M. et al.Purification and biochemical heterogeneity of the mammalian SWI-SNF complex.EMBO J. 1996; 15: 5370-5382PubMed Google Scholar, Wu et al., 2009Wu J.I. Lessard J. Crabtree G.R. Understanding the words of chromatin regulation.Cell. 2009; 136: 200-206Abstract Full Text Full Text PDF PubMed Scopus (198) Google Scholar). SWI/SNF complexes interact with transcription factors, coactivators, and corepressors and are capable of mobilizing nucleosomes at target promoters and enhancers to modulate gene expression (Figure 1) (Hu et al., 2011Hu G. Schones D.E. Cui K. Ybarra R. Northrup D. Tang Q. Gattinoni L. Restifo N.P. Huang S. Zhao K. Regulation of nucleosome landscape and transcription factor targeting at tissue-specific enhancers by BRG1.Genome Res. 2011; 21: 1650-1658Crossref PubMed Scopus (84) Google Scholar, Tolstorukov et al., 2013Tolstorukov M.Y. Sansam C.G. Lu P. Koellhoffer E.C. Helming K.C. Alver B.H. Tillman E.J. Evans J.A. Wilson B.G. Park P.J. Roberts C.W. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters.Proc. Natl. Acad. Sci. USA. 2013; 110: 10165-10170Crossref PubMed Scopus (70) Google Scholar, You et al., 2013You J.S. De Carvalho D.D. Dai C. Liu M. Pandiyan K. Zhou X.J. Liang G. Jones P.A. SNF5 is an essential executor of epigenetic regulation during differentiation.PLoS Genet. 2013; 9: e1003459Crossref PubMed Scopus (0) Google Scholar) and have also been implicated in various types of DNA repair (Dykhuizen et al., 2013Dykhuizen E.C. Hargreaves D.C. Miller E.L. Cui K. Korshunov A. Kool M. Pfister S. Cho Y.-J. Zhao K. Crabtree G.R. BAF complexes facilitate decatenation of DNA by topoisomerase IIα.Nature. 2013; 497: 624-627Crossref PubMed Scopus (79) Google Scholar, Gong et al., 2006Gong F. Fahy D. Smerdon M.J. Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair.Nat. Struct. Mol. Biol. 2006; 13: 902-907Crossref PubMed Scopus (89) Google Scholar, Hara and Sancar, 2002Hara R. Sancar A. The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle.Mol. Cell. Biol. 2002; 22: 6779-6787Crossref PubMed Scopus (0) Google Scholar, Park et al., 2006Park J.-H. Park E.-J. Lee H.-S. Kim S.J. Hur S.-K. Imbalzano A.N. Kwon J. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction.EMBO J. 2006; 25: 3986-3997Crossref PubMed Scopus (0) Google Scholar, Watanabe et al., 2014Watanabe R. Ui A. Kanno S. Ogiwara H. Nagase T. Kohno T. Yasui A. SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability.Cancer Res. 2014; 74: 2465-2475Crossref PubMed Scopus (79) Google Scholar). With respect to a role in the control of gene expression, SWI/SNF complexes have been shown to serve roles in the transcriptional regulation of lineage specification and development in numerous model systems. For example, SWI/SNF complexes contribute to the development of T cells (Chi et al., 2002Chi T.H. Wan M. Zhao K. Taniuchi I. Chen L. Littman D.R. Crabtree G.R. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes.Nature. 2002; 418: 195-199Crossref PubMed Scopus (183) Google Scholar, Wang et al., 2011bWang X. Werneck M.B.F. Wilson B.G. Kim H.-J. Kluk M.J. Thom C.S. Wischhusen J.W. Evans J.A. Jesneck J.L. Nguyen P. et al.TCR-dependent transformation of mature memory phenotype T cells in mice.J. Clin. Invest. 2011; 121: 3834-3845Crossref PubMed Scopus (0) Google Scholar), hepatocytes (Gresh et al., 2005Gresh L. Bourachot B. Reimann A. Guigas B. Fiette L. Garbay S. Muchardt C. Hue L. Pontoglio M. Yaniv M. Klochendler-Yeivin A. The SWI/SNF chromatin-remodeling complex subunit SNF5 is essential for hepatocyte differentiation.EMBO J. 2005; 24: 3313-3324Crossref PubMed Scopus (0) Google Scholar), oligodendrocytes (Yu et al., 2013Yu Y. Chen Y. Kim B. Wang H. Zhao C. He X. Liu L. Liu W. Wu L.M.N. Mao M. et al.Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation.Cell. 2013; 152: 248-261Abstract Full Text Full Text PDF PubMed Scopus (102) Google Scholar), and embryonic stem cell self-renewal and pluripotency (Gao et al., 2008Gao X. Tate P. Hu P. Tjian R. Skarnes W.C. Wang Z. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a.Proc. Natl. Acad. Sci. USA. 2008; 105: 6656-6661Crossref PubMed Scopus (169) Google Scholar, Ho et al., 2009Ho L. Jothi R. Ronan J.L. Cui K. Zhao K. Crabtree G.R. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network.Proc. Natl. Acad. Sci. USA. 2009; 106: 5187-5191Crossref PubMed Scopus (231) Google Scholar). Specificity of SWI/SNF complexes in the control of these developmental programs is achieved in part through restricted expression and combinatorial assembly of variant SWI/SNF subunits. The SMARCD3 (BAF60C) subunit is expressed specifically in the embryonic heart, where it is essential for the control of cardiac development (Lickert et al., 2004Lickert H. Takeuchi J.K. Von Both I. Walls J.R. McAuliffe F. Adamson S.L. Henkelman R.M. Wrana J.L. Rossant J. Bruneau B.G. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development.Nature. 2004; 432: 107-112Crossref PubMed Scopus (307) Google Scholar). Similarly, a switch from the PHF10 (BAF45A) and ACTL6A (BAF53A) subunits, which are expressed in neural stem cells, to DPF1 (BAF45B), DPF3 (BAF45C), and ACTL6B (BAF53B) subunits is essential to control the transition of neural progenitors into postmitotic mature neurons (Lessard et al., 2007Lessard J. Wu J.I. Ranish J.A. Wan M. Winslow M.M. Staahl B.T. Wu H. Aebersold R. Graef I.A. Crabtree G.R. An essential switch in subunit composition of a chromatin remodeling complex during neural development.Neuron. 2007; 55: 201-215Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, Wu et al., 2007Wu J.I. Lessard J. Olave I.A. Qiu Z. Ghosh A. Graef I.A. Crabtree G.R. Regulation of dendritic development by neuron-specific chromatin remodeling complexes.Neuron. 2007; 56: 94-108Abstract Full Text Full Text PDF PubMed Scopus (199) Google Scholar). Such switching can modulate interaction with specific transcription factors (Kadam et al., 2000Kadam S. McAlpine G.S. Phelan M.L. Kingston R.E. Jones K.A. Emerson B.M. Functional selectivity of recombinant mammalian SWI/SNF subunits.Genes Dev. 2000; 14: 2441-2451Crossref PubMed Scopus (0) Google Scholar) and facilitates differential activation of transcriptional pathways. Ultimately, via combinatorial inclusion of variant subunits, several hundred versions of SWI/SNF complexes may exist (Wu et al., 2009Wu J.I. Lessard J. Crabtree G.R. Understanding the words of chromatin regulation.Cell. 2009; 136: 200-206Abstract Full Text Full Text PDF PubMed Scopus (198) Google Scholar) and serve instructive roles in the control of fate specification. The first clue linking SWI/SNF complexes to cancer came in the late 1990s, when mutations of the gene encoding the SMARCB1 (SNF5/INI1/BAF47) subunit were identified in rhabdoid tumors (RTs), a rare but highly aggressive type of cancer that strikes young children (Biegel et al., 1999Biegel J.A. Zhou J.Y. Rorke L.B. Stenstrom C. Wainwright L.M. Fogelgren B. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors.Cancer Res. 1999; 59: 74-79PubMed Google Scholar, Versteege et al., 1998Versteege I. Sévenet N. Lange J. Rousseau-Merck M.F. Ambros P. Handgretinger R. Aurias A. Delattre O. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer.Nature. 1998; 394: 203-206Crossref PubMed Scopus (911) Google Scholar). Smarcb1 was subsequently validated as a bona fide and potent tumor suppressor in genetically engineered mouse models (Guidi et al., 2001Guidi C.J. Sands A.T. Zambrowicz B.P. Turner T.K. Demers D.A. Webster W. Smith T.W. Imbalzano A.N. Jones S.N. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice.Mol. Cell. Biol. 2001; 21: 3598-3603Crossref PubMed Scopus (0) Google Scholar, Klochendler-Yeivin et al., 2000Klochendler-Yeivin A. Fiette L. Barra J. Muchardt C. Babinet C. Yaniv M. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression.EMBO Rep. 2000; 1: 500-506Crossref PubMed Google Scholar, Roberts et al., 2000Roberts C.W. Galusha S.A. McMenamin M.E. Fletcher C.D. Orkin S.H. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice.Proc. Natl. Acad. Sci. USA. 2000; 97: 13796-13800Crossref PubMed Scopus (267) Google Scholar, Roberts et al., 2002Roberts C.W.M. Leroux M.M. Fleming M.D. Orkin S.H. Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5.Cancer Cell. 2002; 2: 415-425Abstract Full Text Full Text PDF PubMed Scopus (194) Google Scholar). While this observation was first noted over a decade ago, it is only more recently via cancer genome sequencing studies that the high prevalence of SWI/SNF subunit mutations have been found in many types of cancer. At least nine genes encoding subunits of SWI/SNF complexes have been identified as recurrently mutated in cancers derived from nearly every tissue in the body, collectively occurring in 20% of all human cancers (Figure 1) (Kadoch et al., 2013Kadoch C. Hargreaves D.C. Hodges C. Elias L. Ho L. Ranish J. Crabtree G.R. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy.Nat. Genet. 2013; 45: 592-601Crossref PubMed Scopus (269) Google Scholar, Shain and Pollack, 2013Shain A.H. Pollack J.R. The spectrum of SWI/SNF mutations, ubiquitous in human cancers.PLoS ONE. 2013; 8: e55119Crossref PubMed Scopus (155) Google Scholar). For example, inactivating mutations of ARID1A are prevalent in a wide variety of cancers, including 45% of ovarian clear cell and endometrioid carcinomas (Jones et al., 2010Jones S. Wang T.-L. Shih IeM. Mao T.-L. Nakayama K. Roden R. Glas R. Slamon D. Diaz Jr., L.A. Vogelstein B. et al.Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma.Science. 2010; 330: 228-231Crossref PubMed Scopus (591) Google Scholar, Wiegand et al., 2010Wiegand K.C. Shah S.P. Al-Agha O.M. Zhao Y. Tse K. Zeng T. Senz J. McConechy M.K. Anglesio M.S. Kalloger S.E. et al.ARID1A mutations in endometriosis-associated ovarian carcinomas.N. Engl. J. Med. 2010; 363: 1532-1543Crossref PubMed Scopus (720) Google Scholar); 19% of gastric cancers (Wang et al., 2011aWang K. Kan J. Yuen S.T. Shi S.T. Chu K.M. Law S. Chan T.L. Kan Z. Chan A.S.Y. Tsui W.Y. et al.Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer.Nat. Genet. 2011; 43: 1219-1223Crossref PubMed Scopus (356) Google Scholar); 19% of bladder cancers (Gui et al., 2011Gui Y. Guo G. Huang Y. Hu X. Tang A. Gao S. Wu R. Chen C. Li X. Zhou L. et al.Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder.Nat. Genet. 2011; 43: 875-878Crossref PubMed Scopus (0) Google Scholar); 14% of hepatocellular cancers (Guichard et al., 2012Guichard C. Amaddeo G. Imbeaud S. Ladeiro Y. Pelletier L. Maad I.B. Calderaro J. Bioulac-Sage P. Letexier M. Degos F. et al.Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma.Nat. Genet. 2012; 44: 694-698Crossref PubMed Scopus (522) Google Scholar); 12% of melanomas (Hodis et al., 2012Hodis E. Watson I.R. Kryukov G.V. Arold S.T. Imielinski M. Theurillat J.-P. Nickerson E. Auclair D. Li L. Place C. et al.A landscape of driver mutations in melanoma.Cell. 2012; 150: 251-263Abstract Full Text Full Text PDF PubMed Scopus (919) Google Scholar); and also less frequently in colorectal, lung, breast, pancreas, and several other cancer types (Kadoch et al., 2013Kadoch C. Hargreaves D.C. Hodges C. Elias L. Ho L. Ranish J. Crabtree G.R. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy.Nat. Genet. 2013; 45: 592-601Crossref PubMed Scopus (269) Google Scholar, Shain and Pollack, 2013Shain A.H. Pollack J.R. The spectrum of SWI/SNF mutations, ubiquitous in human cancers.PLoS ONE. 2013; 8: e55119Crossref PubMed Scopus (155) Google Scholar). SMARCA4 (BRG1), a catalytic ATPase and a core subunit of SWI/SNF complexes, is mutated in several cancer types, including lung (Medina et al., 2008Medina P.P. Romero O.A. Kohno T. Montuenga L.M. Pio R. Yokota J. Sanchez-Cespedes M. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines.Hum. Mutat. 2008; 29: 617-622Crossref PubMed Scopus (134) Google Scholar, Reisman et al., 2003Reisman D.N. Sciarrotta J. Wang W. Funkhouser W.K. Weissman B.E. Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis.Cancer Res. 2003; 63: 560-566PubMed Google Scholar), medulloblastoma (Parsons et al., 2011Parsons D.W. Li M. Zhang X. Jones S. Leary R.J. Lin J.C.-H. Boca S.M. Carter H. Samayoa J. Bettegowda C. et al.The genetic landscape of the childhood cancer medulloblastoma.Science. 2011; 331: 435-439Crossref PubMed Scopus (452) Google Scholar), pancreatic cancer (Wong et al., 2000Wong A.K.C. Shanahan F. Chen Y. Lian L. Ha P. Hendricks K. Ghaffari S. Iliev D. Penn B. Woodland A.-M. et al.BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines.Cancer Res. 2000; 60: 6171-6177PubMed Google Scholar), and, most recently, small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) (Jelinic et al., 2014Jelinic P. Mueller J.J. Olvera N. Dao F. Scott S.N. Shah R. Gao J. Schultz N. Gonen M. Soslow R.A. et al.Recurrent SMARCA4 mutations in small cell carcinoma of the ovary.Nat. Genet. 2014; 46: 424-426Crossref PubMed Scopus (86) Google Scholar, Ramos et al., 2014Ramos P. Karnezis A.N. Craig D.W. Sekulic A. Russell M.L. Hendricks W.P.D. Corneveaux J.J. Barrett M.T. Shumansky K. Yang Y. et al.Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4.Nat. Genet. 2014; 46: 427-429Crossref PubMed Scopus (88) Google Scholar, Witkowski et al., 2014Witkowski L. Carrot-Zhang J. Albrecht S. Fahiminiya S. Hamel N. Tomiak E. Grynspan D. Saloustros E. Nadaf J. Rivera B. et al.Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type.Nat. Genet. 2014; 46: 438-443Crossref PubMed Scopus (101) Google Scholar). Other subunits have also been found to be mutated in cancer, such as PRBM1 (BAF180) in renal carcinoma (Varela et al., 2011Varela I. Tarpey P. Raine K. Huang D. Ong C.K. Stephens P. Davies H. Jones D. Lin M.-L. Teague J. et al.Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma.Nature. 2011; 469: 539-542Crossref PubMed Scopus (667) Google Scholar) and ARID2 in melanoma (Hodis et al., 2012Hodis E. Watson I.R. Kryukov G.V. Arold S.T. Imielinski M. Theurillat J.-P. Nickerson E. Auclair D. Li L. Place C. et al.A landscape of driver mutations in melanoma.Cell. 2012; 150: 251-263Abstract Full Text Full Text PDF PubMed Scopus (919) Google Scholar) and hepatocellular carcinoma (Li et al., 2011Li M. Zhao H. Zhang X. Wood L.D. Anders R.A. Choti M.A. Pawlik T.M. Daniel H.D. Kannangai R. Offerhaus G.J.A. et al.Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma.Nat. Genet. 2011; 43: 828-829Crossref PubMed Scopus (217) Google Scholar) (Figure 1). The mechanisms by which mutation of each individual subunit promote oncogenesis and the function of mutated SWI/SNF complexes in cancer is now an active area of investigation. Many studies have elucidated pathways that are regulated by SWI/SNF complexes and how disruption of these gene expression programs by subunit mutation promotes cancer. For example, SWI/SNF can bind to retinoblastoma (RB) and facilitate repression of RB target genes (Trouche et al., 1997Trouche D. Le Chalony C. Muchardt C. Yaniv M. Kouzarides T. RB and hbrm cooperate to repress the activation functions of E2F1.Proc. Natl. Acad. Sci. USA. 1997; 94: 11268-11273Crossref PubMed Scopus (0) Google Scholar). SWI/SNF also interacts with MYC, both as an activator and as a repressor (Cheng et al., 1999Cheng S.W. Davies K.P. Yung E. Beltran R.J. Yu J. Kalpana G.V. c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function.Nat. Genet. 1999; 22: 102-105Crossref PubMed Scopus (272) Google Scholar, Nagl et al., 2006Nagl Jr., N.G. Zweitzig D.R. Thimmapaya B. Beck Jr., G.R. Moran E. The c-myc gene is a direct target of mammalian SWI/SNF-related complexes during differentiation-associated cell cycle arrest.Cancer Res. 2006; 66: 1289-1293Crossref PubMed Scopus (0) Google Scholar). In part, via disruption of RB function, inactivation of SMARCB1 leads to downregulation of p16INK4a and E2F targets, indicating that SWI/SNF plays a role in cell cycle regulation and differentiation (Betz et al., 2002Betz B.L. Strobeck M.W. Reisman D.N. Knudsen E.S. Weissman B.E. Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB.Oncogene. 2002; 21: 5193-5203Crossref PubMed Scopus (135) Google Scholar, Isakoff et al., 2005Isakoff M.S. Sansam C.G. Tamayo P. Subramanian A. Evans J.A. Fillmore C.M. Wang X. Biegel J.A. Pomeroy S.L. Mesirov J.P. et al.Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation.Proc. Natl. Acad. Sci. USA. 2005; 102: 17745-17750Crossref PubMed Scopus (0) Google Scholar, Oruetxebarria et al., 2004Oruetxebarria I. Venturini F. Kekarainen T. Houweling A. Zuijderduijn L.M.P. Mohd-Sarip A. Vries R.G.J. Hoeben R.C. Verrijzer C.P. P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells.J. Biol. Chem. 2004; 279: 3807-3816Crossref PubMed Scopus (0) Google Scholar). Additionally, SWI/SNF complexes are required for specific regulation of interferon beta targets (Morozov et al., 2007Morozov A. Lee S.J. Zhang Z.-K. Cimica V. Zagzag D. Kalpana G.V. INI1 induces interferon signaling and spindle checkpoint in rhabdoid tumors.Clin. Cancer Res. 2007; 13: 4721-4730Crossref PubMed Scopus (0) Google Scholar, Ramirez-Carrozzi et al., 2009Ramirez-Carrozzi V.R. Braas D. Bhatt D.M. Cheng C.S. Hong C. Doty K.R. Black J.C. Hoffmann A. Carey M. Smale S.T. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling.Cell. 2009; 138: 114-128Abstract Full Text Full Text PDF PubMed Scopus (307) Google Scholar). It has been shown that SWI/SNF complexes can bind to the promoters of roughly one-third of all genes (Ho et al., 2009Ho L. Jothi R. Ronan J.L. Cui K. Zhao K. Crabtree G.R. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network.Proc. Natl. Acad. Sci. USA. 2009; 106: 5187-5191Crossref PubMed Scopus (231) Google Scholar, Tolstorukov et al., 2013Tolstorukov M.Y. Sansam C.G. Lu P. Koellhoffer E.C. Helming K.C. Alver B.H. Tillman E.J. Evans J.A. Wilson B.G. Park P.J. Roberts C.W. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters.Proc. Natl. Acad. Sci. USA. 2013; 110: 10165-10170Crossref PubMed Scopus (70) Google Scholar) and the aforementioned represent only a few of numerous pathways that have been shown to be SWI/SNF dependent. With respect to the chromatin mechanisms that underlie regulation of targets, a largely antagonistic functional relationship between SWI/SNF and PRC2 complexes has been identified (Ho et al., 2009Ho L. Jothi R. Ronan J.L. Cui K. Zhao K. Crabtree G.R. An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network.Proc. Natl. Acad. Sci. USA. 2009; 106: 5187-5191Crossref PubMed Scopus (231) Google Scholar, Kennison and Tamkun, 1988Kennison J.A. Tamkun J.W. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila.Proc. Natl. Acad. Sci. USA. 1988; 85: 8136-8140Crossref PubMed Google Scholar, Kia et al., 2008Kia S.K. Gorski M.M. Giannakopoulos S. Verrijzer C.P. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus.Mol. Cell. Biol. 2008; 28: 3457-3464Crossref PubMed Scopus (150) Google Scholar, Wilson et al., 2010Wilson B.G. Wang X. Shen X. McKenna E.S. Lemieux M.E. Cho Y.-J. Koellhoffer E.C. Pomeroy S.L. Orkin S.H. Roberts C.W.M. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation.Cancer Cell. 2010; 18: 316-328Abstract Full Text Full Text PDF PubMed Scopus (204) Google Scholar). Loss of SMARCB1 leads to upregulation of EZH2 as well as broad H3K27 trimethylation and repression of PRC2 targets, effects that are essential for cancer formation driven by SMARCB1 loss (Wilson et al., 2010Wilson B.G. Wang X. Shen X. McKenna E.S. Lemieux M.E. Cho Y.-J. Koellhoffer E.C. Pomeroy S.L. Orkin S.H. Roberts C.W.M. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation.Cancer Cell. 2010; 18: 316-328Abstract Full Text Full Text PDF PubMed Scopus (204) Google Scholar). Targeted inhibition of EZH2 may represent a therapeutic opportunity for SMARCB1 mutant cancers (Knutson et al., 2013Knutson S.K. Warholic N.M. Wigle T.J. Klaus C.R. Allain C.J. Raimondi A. Porter Scott M. Chesworth R. Moyer M.P. Copeland R.A. et al.Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2.Proc. Natl. Acad. Sci. USA. 2013; 110: 7922-7927Crossref PubMed Scopus (0) Google Scholar). While the mechanisms by which SWI/SNF mutations contribute to cancer are still being elucidated and the relative importance of contributions to transcriptional regulation versus DNA repair are still in question, mutation of SWI/SNF subunits in cancer likely contributes to cancer, at least in part, by perturbing the regulation of transcriptional pathways involved in control of proliferation and fate specification (Eroglu et al., 2014Eroglu E. Burkard T.R. Jiang Y. Saini N. Homem C.C.F. Reichert H. Knoblich J.A. SWI/SNF complex prevents lineage reversion and induces temporal patterning in neural stem cells.Cell. 2014; 156: 1259-1273Abstract Full Text Full Text PDF PubMed Scopus (38) Google Scholar). It is interesting to note that, while loss-of-function SWI/SNF subunit mutations seem most prevalent in cancer, point mutations have also been described, such as a small number of SMARCA4 missense mutations in medulloblastoma (Parsons et al., 2011Parsons D.W. Li M. Zhang X. Jones S. Leary R.J. Lin J.C.-H. Boca S.M. Carter H. Samayoa J. Bettegowda C. et al.The genetic landscape of the childhood cancer medulloblastoma.Science. 2011; 331: 435-439Crossref PubMed Scopus (452) Google Scholar). It is not yet understood whether these point mutations also result in loss of function of the protein, as in a classical tumor suppressor, or whether they result in partial loss, or even potentially oncogenic gain-of-function effects. Looking forward, elucidating the effects of these point mutations will likely provide further mechanistic understanding of the cancer-promoting activity of SWI/SNF mutations. However, from a therapeutic standpoint, as mutations in genes encoding SWI/SNF complex subunits are often loss of function, including nonsense, frameshift, and large deletions (Lee et al., 2012Lee R.S. Stewart C. Carter S.L. Ambrogio L. Cibulskis K. Sougnez C. Lawrence M.S. Auclair D. Mora J. Golub T.R. et al.A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers.J. Clin. Invest. 2012; 122: 2983-2988Crossref PubMed Scopus (158) Google Scholar, Versteege et al., 1998Versteege I. Sévenet N. Lange J. Rousseau-Merck M.F. Ambros P. Handgretinger R. Aurias A. Delattre O. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer.Nature. 1998; 394: 203-206Crossref PubMed Scopus (911) Google Scholar, Wang et al., 2014bWang X. Haswell J.R. Roberts C.W.M. Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer—mechanisms and potential therapeutic insights.Clin. Cancer Res. 2014; 20: 21-27Crossref PubMed Scopus (54) Google Scholar, Wilson and Roberts, 2011Wilson B.G. Roberts C.W.M. SWI/SNF nucleosome remodellers and cancer.Nat. Rev. Cancer. 2011; 11: 481-492Crossref PubMed Scopus (481) Google Scholar), the products of the mutant genes themselves do not constitute obvious drug targets. Consequently, it is of great interest to identify specific vulnerabilities conferred by these mutations on cancer cells that have the potential to provide new therapeutic opportunities. One attractive hypothesis to account for many subunits of a single complex mutated is that all of the mutations are essentially equivalent and result in inactivation of SWI/SNF complexes. However, several findings seemed in conflict with such a possibility. First, the consequences of inactivation of genes encoding SWI/SNF subunits in mice are fairly distinct. For example, while inactivation of Smarcb1 and Smarca4 both result in early embryonic lethality at embryonic day (E)3.5 (Guidi et al., 2001Guidi C.J. Sands A.T. Zambrowicz B.P. Turner T.K. Demers D.A. Webster W. Smith T.W. Imbalzano A.N. Jones S.N. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice.Mol. Cell. Biol. 2001; 21: 3598-3603Crossref PubMed Scopus (0) Google Scholar, Klochendler-Yeivin et al., 2000Klochendler-Yeivin A. Fiette L. Barra J. Muchardt C. Babinet C. Yaniv M. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression.EMBO Rep. 2000; 1: 500-506Crossref PubMed Google Scholar), knockout of Arid1a leads to the absence of mesoderm and arrest at E6.5 (Gao et al., 2008Gao X. Tate P. Hu P. Tjian R. Skarnes W.C. Wang Z. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a.Proc. Natl. Acad. Sci. USA. 2008; 105: 6656-6661Crossref PubMed Scopus (169) Google Scholar), silencing of Smarcd3 results in heart developmental defects (Lickert et al., 2004Lickert H. Takeuchi J.K. Von Both I. Walls J.R. McAuliffe F. Adamson S.L. Henkelman R.M. Wrana J.L. Rossant J. Bruneau B.G. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development.Nature. 2004; 432: 107-112Crossref PubMed Scopus (307) Google Scholar), and Smarca2-deficient mice are viable (Reyes et al., 1998Reyes J.C. Barra J. Muchardt C. Camus A. Babinet C. Yaniv M. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha).EMBO J. 1998; 17: 6979-6991Crossref PubMed Google Scholar). Consequently, subunit loss results in distinct developmental phenotypes. Second, loss of different s

Referência(s)