Some Applications of Projective Resolutions of Identity
1993; Wiley; Volume: s3-67; Issue: 1 Linguagem: Inglês
10.1112/plms/s3-67.1.183
ISSN1460-244X
AutoresRobert Deville, Gilles Godefroy,
Tópico(s)Advanced Harmonic Analysis Research
ResumoProceedings of the London Mathematical SocietyVolume s3-67, Issue 1 p. 183-199 Articles Some Applications of Projective Resolutions of Identity Robert Deville, Robert Deville Université de Franche-Comté, U.A. 741 C.N.R.S., 25030 Besançon Cedex, France Present address: Departement de Mathématiques Pures, Université Bordeaux 1, 351, cours de la Libéeration, 33405 Talence, FranceSearch for more papers by this authorGilles Godefroy, Gilles Godefroy Equipe d' Analyse, Université Paris VI, Tour 46-0, 4ème étage, 4, place Jussieu, 75252 Paris Cedex 05, FranceSearch for more papers by this author Robert Deville, Robert Deville Université de Franche-Comté, U.A. 741 C.N.R.S., 25030 Besançon Cedex, France Present address: Departement de Mathématiques Pures, Université Bordeaux 1, 351, cours de la Libéeration, 33405 Talence, FranceSearch for more papers by this authorGilles Godefroy, Gilles Godefroy Equipe d' Analyse, Université Paris VI, Tour 46-0, 4ème étage, 4, place Jussieu, 75252 Paris Cedex 05, FranceSearch for more papers by this author First published: July 1993 https://doi.org/10.1112/plms/s3-67.1.183Citations: 33 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract We show that the unit ball K of the bidual of an Asplund space is a Corson compact or contains [0,ω1], and that it has the Namioka property on separate-to-joint continuity. The same results are shown for K a Valdivia compact; a by-product is that all dyadic compacts have the Namioka property. Some connections with weakly compactly generated dual spaces and renormings are given. Citing Literature Volumes3-67, Issue1July 1993Pages 183-199 RelatedInformation
Referência(s)