Bioimpedance analysis: evaluation of leg-to-leg system based on pressure contact foot-pad electrodes
1997; Lippincott Williams & Wilkins; Volume: 29; Issue: 4 Linguagem: Inglês
10.1097/00005768-199704000-00015
ISSN1530-0315
AutoresCHRISTOPHER NU EZ, Dympna Gallagher, Marjolein Visser, F. Xavier Pi‐Sunyer, ZiMian Wang, Steven B. Heymsfield,
Tópico(s)Electrical and Bioimpedance Tomography
ResumoConventional single frequency bioimpedance analysis (BIA) systems require technician placement of arm and leg gel electrodes, a suitable location for recumbent measurements, and a separate measurement of body weight. The aim of this study was to evaluate a new single frequency 50 kHz leg-to-leg bioimpedance analysis (BIA) system combined with a digital scale that employs stainless steel pressure-contact foot pad electrodes for standing impedance and body weight measurements. Healthy adults were evaluated for 1) electrode validity and 2) potential for body component estimation. Pressure-contact foot-pad electrode measured impedance was highly correlated with (N= 9, r = 0.99, P < 0.001) impedance measured using conventional gel electrodes applied to the plantar surface of both lower extremities; mean(±SD) impedance was systematically higher by about 15 ohms for pressure contact electrodes (526 ± 56 ohms vs 511 ± 59 ohms; P< 0.001). Second, the relationship between stature-adjusted leg-to-leg impedance (H2/Z) measured by the new system and two body composition components (total body water by 3H2O dilution (N = 144); and fat-free body mass, by underwater weighing and dual x-ray absorptiometry (N = 231)) was modeled using multiple regression analysis. Correlation coefficients for H2/Z alone versus body composition components were lower for leg-to-leg BIA than for arm-to-leg BIA: correlation coefficients and SEEs became similar for the leg-to-leg and arm-to-leg BIA systems with addition of three covariates (age, gender, and waist/hip circumference ratio) to regression models. The leg-to-leg pressure contact electrode BIA system has overall performance characteristics for impedance measurement and body composition analysis similar to conventional arm-to-leg gel electrode BIA and offers the advantage of increased speed and ease of measurement.
Referência(s)