Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature
1972; American Geophysical Union; Volume: 77; Issue: 32 Linguagem: Inglês
10.1029/jb077i032p06360
ISSN2156-2202
Autores Tópico(s)X-ray Diffraction in Crystallography
ResumoJournal of Geophysical Research (1896-1977)Volume 77, Issue 32 p. 6360-6384 Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature A. L. Frisillo, A. L. FrisilloSearch for more papers by this authorG. R. Barsch, G. R. BarschSearch for more papers by this author A. L. Frisillo, A. L. FrisilloSearch for more papers by this authorG. R. Barsch, G. R. BarschSearch for more papers by this author First published: 10 November 1972 https://doi.org/10.1029/JB077i032p06360Citations: 241AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The nine single-crystal elastic constants of orthopyroxene, Mg0.8Fe0.2SiO3, have been measured as a function of temperature from 25° to 350°C and at 25°C as a function of pressure to 10 kb by means of the ultrasonic pulse superposition technique. It was found that the shear constants exhibited a distinctly nonlinear pressure dependence in addition to the usual linear terms. Owing to the difficulty in obtaining precise data for the longitudinal modes above approximately 4.5 kb, where curvature might be observed, only a linear pressure dependence was found for the on-diagonal longitudinal constants. Because the second pressure derivatives of the on-diagonal longitudinal constants (c11, c22, and c33) enter the expressions required for the evaluation of the second pressure derivatives of the off-diagonal constants (c12, c23, and c13), the second derivatives of the off-diagonal constants are probably considerably in error. The second pressure derivatives of the on-diagonal shear constants and of the unprocessed data for the cross-coupling moduli, however, have been precisely and consistently measured and represent the first observations of curvature for noncubic oxide materials. The dimensionless quantities K(∂cμv/∂P2) (where K denotes the bulk modulus, cμv denotes the elastic constants, and P denotes the pressure) for the on-diagonal shear moduli are about ten times larger than the corresponding quantities for the eight alkali halides for which these quantities are known. The isotropic bulk and shear moduli and their pressure and temperature derivatives calculated from the single-crystal data by means of the Voigt-Reuss-Hill (VRH) approximation are KS = 1.035 Mb, G = 0.749 Mb, (∂KS/∂P)T = 9.59, (∂G/∂P)T = 2.38, (∂KS/∂T)p = −0.268 kb°C−1, and (∂G/∂T)p = −0.119 kb°C−1. Owing to the large values of the pressure derivatives of the longitudinal elastic constants c11, c22, and especially c33, the pressure derivative of the bulk modulus of orthopyroxene is approximately twice as large as that for most other materials normally considered to be of importance in the earth's mantle. The ultrasonic equation of state calculated from the first-order Birch equation agrees well with static-compression data and, below about 150 kb, with shock-wave data. The elastic Grueneisen parameter calculated from the VRH approximation is found to be 30% larger than the thermal Grueneisen parameter. References Ahrens, T. J., E. S. Gaffney, Dynamic compression of enstatite, J. Geophys. Res., 76, 5504–5513, 1971. Akimoto, S. I., Y. Syono, High-pressure decomposition of the system FeSiO3-MgSiO3, Phys. Earth Planet. Interiors, 3, 186–188, 1970. Alexandrov, K. A., T. V. Ryzhova, The elastic properties of rock-forming minerals, 1, Pyroxenes and amphiboles, Bull. Acad. Sci. USSR. Geophys. Ser., 9, 871–875, 1961. Alexandrov, K. A., T. V. Ryzhova, B. P. Belikow, The elastic properties of pyroxenes, Soviet Phys. Crystallogr., 8, 589–591, 1963. Anderson, D. L., C. Sammis, Partial melting in the upper mantle, Phys. Earth Planet. Interiors, 3, 41–50, 1970. Anderson, O. L., Determination and some uses of isotropic elastic constants of polycrystalline aggregates using single crystal data, Physical Acoustics, 3B W. P. Mason, 43–95, Academic, New York, 1965. Anderson, O. L., The use of ultrasonic measurements under modest pressure to estimate compression at high pressures, J. Phys. Chem. Solids, 27, 547–565, 1966. Anderson, O. L., E. Schreiber, R. L. Liebermann, N. Soga, Some elastic constant data on minerals relevant to geophysics, Rev. Geophys. Space Phys., 6, 491–524, 1968. Barron, T. H. K., On the thermal expansion of solids at low temperatures, Phil. Mag., 46, 720–734, 1955. Barsch, G. R., Adiabatic, isothermal and intermediate pressure derivatives of the elastic constants for cubic symmetry, 1, Basic formulae, Phys. Status Solidi, 19, 129–138, 1967. Barsch, G. R., A. L. Frisillo, Determination of second pressure derivatives of elastic constants from elastic wave velocities for orthorhombic, tetragonal, trigonal, hexagonal, and cubic symmetry, J. Acoust. Soc. Amer., 46, 1973. Barsch, G. R., H. E. Shull, Pressure dependence of elastic constants and crystal stability of alkali halides, NaI and KI, Phys. Status Solidi, 43, 637–649, 1971. Beattie, J. A., Six place tables of the Debye energy and specific heat functions, J. Math. Phys. Cambridge Mass., 6, 1–32, 1926. Bechmann, R., The elastic piezoelectric and dielectric constants of piezoelectric crystalsLandolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, 2, Group III: Crystal and Solid State Physics K. H. Hellwege, 40–101, Springer, New York, 1969. Birch, F., The velocity of compressional waves in rocks to 10 kilobars, 1, J. Geophys. Res., 65, 1038–1102, 1960. Bogardus, E. H., Elastic anharmonicity in germanium, magnesium oxide and fused silica, Ph.D. thesis,, 117 pp.,Pa. State Univ.,University Park,1964. Bridgman, P. W., Rough compression on 177 substances to 40,000 kg/cm2, Proc. Amer. Acad. Arts Sci., 76, 71–87, 1948. Chang, Z. P., G. R. Barsch, Nonlinear pressure dependence of elastic constants and fourth-order elastic constants of cesium halides, Phys. Rev. Lett., 19, 1381–1383, 1967. Chang, Z. P., G. R. Barsch, Pressure dependence of the elastic constants of RbCl, RbBr and RbI, J. Phys. Chem. Solids, 32, 27–40, 1971. Chang, Z. P., G. R. Barsch, Pressure dependence of single-crystal elastic constants and anharmonic properties of spinel, J. Geophys. Res., 1972. Chung, D. H., Equations of state of pyroxenes in the (Mg, Fe)SiO3 system (abstract), Eos Trans. AGU, 52, 919, 1971. Draper, N., H. Smith, Applied Regression Analysis, 305, John Wiley, New York, 1966. Fisher, E. S., H. J. McSkimin, Adiabatic elastic moduli of single-crystal alpha uranium, J. Appl. Phys, 29, 1473–1484, 1958. Frisillo, A. L., The elastic coefficients of bronzite as a function of pressure and temperature, Ph.D. thesis,, 170 pp.,Pa. State Univ.,University Park,1972. Frisillo, A. L., S. T. Buljan, The linear thermal expansion coefficients of orthopyroxene to 1000°C, J. Geophys. Res., 77, 1972. Gieske, J. H., The third order elastic coefficients and some anharmonic properties of aluminum oxide, Ph.D. thesis,, 133 pp.,Pa. State Univ.,University Park,1968. Gieske, J. H., G. R. Barsch, Pressure dependence of the elastic constants of single crystalline aluminum oxide, Phys. Status Solidi, 29, 121–131, 1968. Graham, E. K., The elastic coefficients of forsterite as a function of pressure and temperature, Ph.D. thesis,, 161 pp.,Pa. State Univ.,University Park,1969. Graham, E. K., Elasticity and composition of the upper mantle, Geophys. J. Roy. Astron. Soc., 20, 285–302, 1970. Graham, E. K., G. R. Barsch, Elastic constants of single-crystal forsterite as a function of temperature and pressure, J. Geophys. Res., 74, 5949–5960, 1969. Hearmon, R. F. S., The elastic constants of non-piezoelectric crystalsLandolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, 2, Group III: Crystal and Solid State Physics K. H. Hellwege, 1–39, Springer, New York, 1969. Hughes, D. S., T. Nishitake, Measurement of elastic wave velocities in Armco iron and jadite under high pressures and high temperatures, Geophysical Papers Dedicated to Professor Kenzo Sassa, 379–385, Geophysical Institute, Kyoto University, Kyoto, Japan, 1963. Kumazawa, M., The elastic constants of single-crystal orthopyroxene, J. Geophys. Res., 74, 5973–5980, 1969. Kumazawa, M., O. L. Anderson, The elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite, J. Geophys. Res., 74, 5961–5972, 1969. McSkimin, H. J., Pulse superposition method for measuring ultrasonic wave velocities in solids, J. Acoust. Soc. Amer., 33, 12–16, 1961. Miller, D. L., Precision measurement of the elastic constants of solids and their temperature and pressure variation, Ph.D. thesis,, 80 pp.,Pa. State Univ.,University Park,1969. Olinger, B., A. Duba, Compression of olivine to 100 kilobars, J. Geophys. Res., 76, 2610–2616, 1971. Overton Jr., W. C., Relation between ultrasonically measured properties and the coefficients in the solid equation of state, J. Chem. Phys., 37, 116–119, 1962. Ringwood, A. E., The pyroxene-garnet transformation in the earth's mantle, Earth Planet. Sci. Lett., 2, 255–263, 1967. Ryzhova, T. V., K. S. Alexandrov, V. M. Korobkova, The elastic properties of rock-forming minerals, 5, Additional data on silicates, Izv. Acad. Sci. USSR Phys. Solid Earth, 2, 111–113, 1966. Simmons, G., Velocity of shear waves in various minerals to 10 kilobars, J. Geophys. Res., 69, 1117–1130, 1964. Soga, N., Elastic constants of garnet under pressure and temperature, J. Geophys. Res., 72, 4227–4234, 1967. Striefler, M., G. R. Barsch, Lattice dynamics of zero wave vector and elastic constants of spinel in the rigid ion approximation, J. Phys. Chem. Solids, 33, 1972. Thurston, R. N., Effective elastic coefficients for wave propagation in crystals under stress, J. Acoust. Soc. Amer., 37, 348–356, 1965. Thurston, R. N., Calculation of lattice-parameter changes with hydrostatic pressure from third-order elastic constants, J. Acoust. Soc. Amer., 41, 1093–1111, 1967. Thurston, R. N., K. Brugger, Third order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media, Phys. Rev., 133, A1604–A1610, 1964. Wyckoff, R. G. W., Crystal structures, 4, Miscellaneous Inorganic Compounds, Silicates and Basic Structural Information, chapter XII.B, 301, Interscience, New York, 1968. Citing Literature Volume77, Issue3210 November 1972Pages 6360-6384 ReferencesRelatedInformation
Referência(s)