Finite difference schemes for conservation laws
1982; Wiley; Volume: 35; Issue: 3 Linguagem: Inglês
10.1002/cpa.3160350305
ISSN1097-0312
Autores Tópico(s)Advanced Mathematical Physics Problems
ResumoCommunications on Pure and Applied MathematicsVolume 35, Issue 3 p. 379-450 Article Finite difference schemes for conservation laws Ronald J. Diperna, Ronald J. Diperna University of WisconsinSearch for more papers by this author Ronald J. Diperna, Ronald J. Diperna University of WisconsinSearch for more papers by this author First published: May 1982 https://doi.org/10.1002/cpa.3160350305Citations: 10AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Bibliography 1 Bakhvarov, N., On the existence of regular solutions in the large for quasilinear hyperbolic systems, Zh. Vychisl. Mat. i Mat. Fiz. F12 10, 1970, pp. 969–980. Google Scholar 2 Chorin, A. J., Random choice solution of hyperbolic systems, J. Comput. Phys. 22, 1976, pp. 517–530. 10.1016/0021-9991(76)90047-4 Web of Science®Google Scholar 3 Chorin, A. J., Random choice methods with applications to reading gas flow, J. Comput. Phys. 25, 1977, pp. 253–272. 10.1016/0021-9991(77)90101-2 CASWeb of Science®Google Scholar 4 Chorin, A. J., Flame advection and propagation algorithms, J. Comput. Phys. 35, 1980, pp. 1–11. 10.1016/0021-9991(80)90030-3 Web of Science®Google Scholar 5 Conway, E., and Smoller, J. A., Global solutions of the Cauchy problem for quasi-linear equations in several space variables, Comm. Pure Appl. Math. 19, 1966, pp. 95–105. 10.1002/cpa.3160190107 Web of Science®Google Scholar 6 Courant, R., and Friedrichs, K. O., Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, 1948. Google Scholar 7 DiPerna, R. J., Global solutions to a class of nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 26, 1973, pp. 1–28. 10.1002/cpa.3160260102 Web of Science®Google Scholar 8 DiPerna, R. J., Existence in the large for nonlinear hyperbolic conservation laws, Arch. Rational Mech. Anal. 52, 1973, pp. 244–257. 10.1007/BF00247735 Web of Science®Google Scholar 9 DiPerna, R. J., Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 24, 1975, pp. 1047–1071. 10.1512/iumj.1975.24.24088 Web of Science®Google Scholar 10 Federer, H., Geometric Measure Theory, Springer, New York, 1969. Google Scholar 11 Friedrichs, K. O., and Lax, P. D., Systems of conservation laws with a convex extension, Proc. Nat. Acad. Sci. USA 68, 1971, pp. 1686–1688. 10.1073/pnas.68.8.1686 CASPubMedWeb of Science®Google Scholar 12 Glimm, J., Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18, 1965, pp. 697–715. 10.1002/cpa.3160180408 Web of Science®Google Scholar 13 Glimm, J., and Lax, P. D., Decay of solutions of systems of nonlinear hyperbolic conservation laws, Mem. Amer. Math. Soc. 101, 1970. Google Scholar 14 Glimm, J., Isaacson, E., Marchesin, D., and McBryan, O., Front tracking for hyperbolic systems, Adv. Appl. Math., 2, 1981, pp. 91–119. 10.1016/0196-8858(81)90040-3 Google Scholar 15 Glimm, J., Marchesin, D., and McBryan, O., Subgrid resolution of fluid discontinuities II, J. Comp. Phys. 37, 1980, pp. 336–354. 10.1016/0021-9991(80)90041-8 Web of Science®Google Scholar 16 Glimm, J., Marchesin, D., and McBryan, O., Unstable fingers for two phase flow, Comm. Pure Appl. Math. 34, 1981, pp. 53–75. 10.1002/cpa.3160340104 Web of Science®Google Scholar 17 Greenberg, J. M., The Cauchy problem for the quasilinear wave equation, preprint. Google Scholar 18 Jennings, G., Discrete shocks, Comm. Pure Appl. Math. 27, 1974, pp. 25–37. 10.1002/cpa.3160270103 Web of Science®Google Scholar 19 Harten, A., Hyman, J., and Lax, P. D., On finite-difference approximations and entropy conditions for shocks, Comm. Pure Appl. Math., 29, 1976, pp. 297–322. 10.1002/cpa.3160290305 Web of Science®Google Scholar 20 Lax, P. D., Hyperbolic systems of conservation laws, II, Comm. Pure Appl. Math. 10, 1957, pp. 537–566. 10.1002/cpa.3160100406 Web of Science®Google Scholar 21 Lax, P. D., Shock waves and entropy, in Contributions to Nonlinear Functional Analysis, ed. E. A. Zarantonello, Academic Press, 1971, pp. 603–634. Google Scholar 22 Lax, P. D., and Wendroff, B., Systems of conservation laws, Comm. Pure Appl. Math., 13, 1960, pp. 217–237. 10.1002/cpa.3160130205 Web of Science®Google Scholar 23 Lax, P. D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS, Monograph No. 11, SIAM, 1973. Google Scholar 24 Liu, T.-P., Solutions in the large for the equations of non-isentropic gas dynamics, Indiana Univ. Math. J. 26, 1977, pp. 147–177. 10.1512/iumj.1977.26.26011 Web of Science®Google Scholar 25 Liu, T.-P., Initial-boundary value problems for gas dynamics, Arch. Rational Mech. Anal. 64, 1977, pp. 137–168. 10.1007/BF00280095 Web of Science®Google Scholar 26 Liu, T.-P., The deterministic version of the Glimm scheme, Comm. Math. Phys. 57, 1977, pp. 135–148. 10.1007/BF01625772 Web of Science®Google Scholar 27 Majda, A., and Osher, S., Numerical viscosity and the entropy condition, Comm. Pure Appl. Math. 32, 1979, pp. 797–838. 10.1002/cpa.3160320605 Web of Science®Google Scholar 28 Majda, A., and Ralston, J., Discrete shock profiles for systems of conservation laws, Comm. Pure Appl. Math. 32, 1979, pp. 445–482. 10.1002/cpa.3160320402 Web of Science®Google Scholar 29 Nishida, T., and Smoller, J. A., Solutions in the large for some nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math. 26, 1973, pp. 183–200. 10.1002/cpa.3160260205 Web of Science®Google Scholar 30 Nishida, T., Global solutions for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad. 44, 1968, pp. 642–646. 10.3792/pja/1195521083 Web of Science®Google Scholar 31 Oleinik, O. A., Discontinuous solutions of nonlinear differential equations, Uspekhi Mat. Nauk N.S. 12 1957, No. 3-75, 3-73 A.M.S. Transl., Ser. 2, 26, pp. 95–172. Google Scholar 32 Tartar, L., Compensated compactness and applications to partial differential equations, in Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 4, ed. R. J. Knops, Pitman Press, 1979. Google Scholar 33 Vol'pert, A. I., The spaces BV and quasilinear equations, Math. USSR-Sb. 2, 1967, pp. 257–267. 10.1070/SM1967v002n02ABEH002340 Google Scholar 34 Crandall, M., and Majda, A., Monotone difference approximations for scalar conservation laws, SIAM J. Numerical Analysis, 34, 1980, pp. 1–21. Web of Science®Google Scholar 35 Crandall, M., and Majda, A., The method of fractional steps for conservation laws, preprint. Google Scholar 36 Engquist, B., and Osher, S., One sided difference approximations for nonlinear conservation laws, preprint. Google Scholar Citing Literature Volume35, Issue3May 1982Pages 379-450 ReferencesRelatedInformation
Referência(s)