
Aplicação de métodos geoestatísticos para identificação de dependência espacial na análise de dados de um ensaio de espaçamento florestal em delineamento sistemático tipo leque
2008; Sociedade de Investigações Florestais; Volume: 32; Issue: 3 Linguagem: Português
10.1590/s0100-67622008000300011
ISSN1806-9088
AutoresMelissa Oda‐Souza, Décio Barbin, Paulo Justiniano Ribeiro, José Luiz Stape,
Tópico(s)Remote Sensing and LiDAR Applications
ResumoOs delineamentos sistemáticos se destacam pela sua compacidade e abrangência e por permitir testar maior número de espaçamentos possíveis. No entanto, não é utilizado devido ao arranjo sistemático (não casualizado) das plantas e à alta sensibilidade para valores perdidos. O objetivo deste trabalho foi descrever o modelo geoestatístico e métodos associados de inferência no contexto de análise de experimentos não aleatorizados, reportando resultados aplicados para identificar a dependência espacial em um particular experimento em delineamento sistemático tipo leque de Eucalyptus dunnii. Também foram propostas, analisadas e comparadas diferentes alternativas para tratar dados faltantes que pudessem advir de falhas e, ou, mortalidade de plantas. Os dados foram analisados seguindo-se três modelos que diferiram, com co-variáveis, na forma de tratar os dados faltantes. Para cada um destes foi construído um semivariograma, com o ajuste de três modelos de função de correlação, sendo os parâmetros estimados pelo método de máxima verossimilhança e selecionados pelo critério de Akaike. Esses modelos, com e sem o componente espacial, foram comparados pelo teste da razão de verossimilhança. De acordo com os resultados, verificou-se que: (1) as co-variáveis interagiram positivamente com a variável de resposta, evitando que dados coletados sejam desperdiçados; (2) a comparação dos modelos, com e sem o componente espacial, não confirmou a existência de dependência; (3) a incorporação da estrutura de dependência espacial aos modelos observacionais recuperou a capacidade de fazer inferências válidas na ausência de aleatorização, permitindo contornar problemas operacionais e, assim, garantindo que os dados possam ser submetidos a uma análise clássica.
Referência(s)